قضیه آخر فرما

مدیران انجمن: javad123javad, parse

ارسال پست
نمایه کاربر
احسان2142

محل اقامت: اصفهان

عضویت : سه‌شنبه ۱۳۸۸/۵/۲۰ - ۱۲:۴۷


پست: 679

سپاس: 20

جنسیت:

تماس:

قضیه آخر فرما

پست توسط احسان2142 »

سلام!
کسی می تونه قضیه ی آخر فرما را با اثبات توضیح دهید ؟
ممنون! smile124 smile124 smile124 smile124

نمایه کاربر
pulsar

محل اقامت: تبریز

عضویت : پنج‌شنبه ۱۳۸۶/۲/۲۰ - ۲۰:۳۸


پست: 380

سپاس: 196


تماس:

Re: قضیه آخر فرما

پست توسط pulsar »

تصویر

این قضیه در عین سادگی، حدود 350 سال طول کشید تا اثبات درستی براش ارائه بشه.
اندرو وایلز در 1995 با حل مسئله تانیاما-شیمورا در خم های بیضوی، به اثبات این قضیه رسید.
درک اثبات اندرو، به دانش ریاضی بالایی نیاز داره و کار جوجه دانشجوهایی مثل ما نیست.
ولی با این حال اثباتش رو می ذارم:

Modular elliptic curves and Fermat's Last Theorem



اگه حاشیه این صفحه جای کافی داشت، شاید اثباتی که از فرما برای این قضیه داشتیم،
خیلی آسون تر از اثبات وایلز بود
تصویر
Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos,
et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem
nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.


Fermat: I have discovered a truly marvelous proof that it is impossible to separate
a cube into two cubes, or a fourth power into two fourth powers, or in general,
any power higher than the second into two like powers.
This margin is too narrow to contain it.
تصویر
Fermat's Last Theorem
Fermat's Last Theorem (Documentary)l


-------------------------------------------------------------------
کسی می تونه قضیه ی آخر فرما را با اثبات توضیح دهید ؟
من نمی تواند قضیه آخر فرما را با اثبات توضیح دهند! smile022
Beauty is truth, truth beauty
That is all ye know on earth
and all ye need to know

نمایه کاربر
BLUE

عضویت : جمعه ۱۳۸۸/۴/۲۶ - ۱۸:۱۵


پست: 417

سپاس: 48

Re: قضیه آخر فرما

پست توسط BLUE »

درود برشما،

مطلبی نیز هست با عنوان "از ديوفانتوس تا وايلز...قضيه آخر فرما"
که می توانید از اینجا دریافت کنید.

اطلاعات بیشتر و همچنین نوشته خود Andrew John Wiles
در جستار مقالاتي از گوشه و كنار رياضيات... آمده است.
كتاب طبيعت با نمادهای رياضی نوشته شده است.
Galileo Galilei

نمایه کاربر
احسان2142

محل اقامت: اصفهان

عضویت : سه‌شنبه ۱۳۸۸/۵/۲۰ - ۱۲:۴۷


پست: 679

سپاس: 20

جنسیت:

تماس:

Re: قضیه آخر فرما

پست توسط احسان2142 »

سلام!
از کمک هایتان واقعاً ممنونم! smile124 smile124 smile124 smile072 smile072 smile072

نمایه کاربر
خروش

عضویت : پنج‌شنبه ۱۳۸۶/۱/۲۳ - ۱۲:۱۵


پست: 3009

سپاس: 2066

Re: قضیه آخر فرما

پست توسط خروش »

خواندن كتاب Fermat's Last Theorem نوشته Simon Sigh را به همه دوستان سفارش می كنم.
من گاهی نكته هایی از این كتاب را در یادداشت هایم در هوپا نوشتم. داستانی ست بسیار زیبا.
شاید كمتر پرسمان ریاضی این همه به گوش مردم خورده باشد. این نویسنده انگلیسی هندی تبار
كتاب های دیگری هم نوشته، اما هیچكدام به اندازه واپسین قضیه فرما خواننده نداشت.


گفتم به شیخ شهر كه كارت ریاست، گفت
آنكس كه شیخ هست و ریاكار نیست، كیست

نمایه کاربر
rohamjpl

نام: roham hesami

محل اقامت: Tehran -Qeytariyeh, Ketabi Street, 8 meters from Saba

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 644

سپاس: 395

جنسیت:

تماس:

Re: قضیه آخر فرما

پست توسط rohamjpl »

$ x^p\equiv x\pmod p$ پرداختن به سوال در اینجا x یک عنصر غیر صفر از حلقه Zm است ، جایی که m یک عدد اول است. توسط فرمت کوچک ما داریم$x^{m-1}\equiv 1\pmod m. $,و $ n\equiv k\pmod{m-1}$و $n\equiv k\pmod{m-1} $لذا $ x^n=x^{k+q\cdot(m-1)}=x^k\cdot x^{q(m-1)}=x^k\cdot(x^{m-1})^q\equiv x^k\cdot 1^q=x^k\pmod{m},$
من معتقدم (ممکن است اشتباه باشد) این ادعا وجود دارد که اگر$a^p+b^p=c^p $ ، پس باید$a\equiv b \pmod p $ داشته باشیم. من ابتدا آن را به$a=x, b=y, c=z $ و سپس به $ a=x,b=−z,c=−y $ ، اعمال کردم.حال آیا می توانیم تمام اعداد صحیح مثبت a ، b را پیدا کنیم به طوری که$ a^{n}+b^{n}$ بر $ (n+1)^{th}$بخش پذیرباشه من فکر می کنم این سوال معادل حل کردن جمله است$a^{n} + b^{n} = c^{n+1} $و میشه گفت $a^{n+1} + b^{n+1} = c^{n+2} = c \times c^{n+1}=(a^{n}+b^{n}) \cdot c $وقتی n = 2 ساده است که یک راه حل کامل کم و بیش کامل ارائه دهید: $ c^3$ مجموع مربعات است اگر و فقط اگر c باشد ، بنابراین $ c = d^2 + e^2$ را بنویسید و بقیه فاکتور بندی بر روی اعداد صحیح گوسی است.
برای همه n هاراه حل های$a = x(x^n + y^n), b = y(x^n + y^n), c = x^n + y^n $ برای اعداد صحیح x ، y وجود دارد. اما فکر می کنم یافتن همه راه حل ها به طرز باورنکردنی سخت باشد.
تصویر

ارسال پست