تصویر های دانشیک

مدیران انجمن: parse, javad123javad

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

چیستانی دیگر با حال و هوایی مشابه. بحثی که در کنار سرگرم کننده
بودنش (فارغ از آنکه آسان است یا دشوار)، اشارات با اهمیتی نیز میتواند
در خود داشته باشد. smile072
*****************************************************
پیوست ها
p3.png
p3.png (102.66 کیلو بایت) مشاهده 5361 مرتبه

نمایه کاربر
m.s.f

نام: میثم

محل اقامت: اسپهان

عضویت : یک‌شنبه ۱۳۹۱/۷/۳۰ - ۱۹:۳۳


پست: 244

سپاس: 130

جنسیت:

تماس:

Re: تصویر های دانشیک

پست توسط m.s.f »

من فکر میکنم اشکال در سری است.
اشکال به نظرم از تعریف مشتق به دست میاد . داریم:
[tex]f{}'{(x)}=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}[/tex]
حالا اگه بخوایم با استفاده از تعریف مشتق سری رو به دست بیاریم خواهیم دید:
h عددی حقیقیه و به صفر میل میکنه و ممکنه که عدد صحیحی نباشه و [tex]f(x+h)[/tex] برابر x+h تا x+h است. خب اگه h صحیح نیست پس x+h تا از یک تابع یعنی چی؟
برای گسترش نظریه ها نباید به اصول نظریه ها مطمئن بود.

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

....خب اگه h صحیح نیست پس x+h تا از یک تابع یعنی چی؟


سپاس m.s.f گرامی،
شاید مبهم ترین قسمت آن اثبات به خط دوم آن (عبارت "x-بار" ) برگردد. همانطور که شما اشاره کردید، "x-بار" تنها زمانی در ذهن ما (به لحاظ شهودی و عینی) معنا می یابد که "x" عددی صحیح باشد. برای x های غیرصحیح (مثلا حقیقی یا مختلط یا...) ، عبارت "x-بار" عجیب و بی مفهوم می نماید اما آیا "نادرست" هم هست؟
در ریاضی بسیار پیش می آید که یک مفهوم دارای عینیت شهودی نباشد اما این الزاما نمیتواند برهانی بر "نادرست بودن" آن باشد. فی المثل ما معمولا مفهوم "توان" را از مفهوم "ضرب" در خاطر می آوریم (x^4=x*x*x*x) اما حتی تصور عددی با توان گنگ (مثلا [tex]x^{ \sqrt {2}}[/tex] ) هم برای ما (یا اغلب ما) دشوار و سنگین است (هرچند که می دانیم مفهومی نادرست نیست).

پس: اکنون برایمان معلوم است که عبارت "x-بار" برای x های غیرصحیح، به لحاظ شهودی "عجیب" و "بی مفهوم" به نظر میرسد. حال باید ببینیم که آیا به لحاظ جبری "نادرست" هم هست؟ به گمانم این روش درستی برای دنبال کردن بحث شما باشد.

میخواهم بگویم که "نادرست بودن"، دلایل جداگانه ای طلب میکند. "عجیب یا غیر شهودی بودن" یک عبارت، تنها میتواند ما را به "نادرست" بودن آن مشکوک کند (شک ما ممکن است صحیح باشد یا نباشد) و در هر حال، نمیتواند به عنوان یک برهان کامل باشد.
smile072

نمایه کاربر
m.s.f

نام: میثم

محل اقامت: اسپهان

عضویت : یک‌شنبه ۱۳۹۱/۷/۳۰ - ۱۹:۳۳


پست: 244

سپاس: 130

جنسیت:

تماس:

Re: تصویر های دانشیک

پست توسط m.s.f »

ممنون
اکنون برایمان معلوم است که عبارت "x-بار" برای x های غیرصحیح، به لحاظ شهودی "عجیب" و "بی مفهوم" به نظر میرسد. حال باید ببینیم که آیا به لحاظ جبری "نادرست" هم هست؟

درسته
میخواهم بگویم که "نادرست بودن"، دلایل جداگانه ای طلب میکند. "عجیب یا غیر شهودی بودن" یک عبارت، تنها میتواند ما را به "نادرست" بودن آن مشکوک کند (شک ما ممکن است صحیح باشد یا نباشد) و در هر حال، نمیتواند به عنوان یک برهان کامل باشد.

قبوله

حالا می خوام بگم ممکنه عیب از سری نباشه و عیب از مشتق گیری ما باشه.
توضیح:
نگاه کن مشتق برای سری همگرا به صورت زیر تعریف میشه.
[tex]if\; \; \; f(x)=\sum_{n=0}^{+\infty }c_{n}x^{n}\; \Rightarrow \; f'(x)=\sum_{n=1}^{+\infty }nc_{n}x^{n-1}[/tex]
و حالا تابع ما:
[tex]f(x)=\sum_{i=1}^{x}x_{i}\; \; ,x_{i}=x[/tex]
اگه بخوایم ازش مشتق بگیریم داریم:
[tex]f'(x)=(\sum_{i=1}^{x}x_{i})'\; \; ,x_{i}=x[/tex]
درسته که سری ما متناهی و مشتق پذیره ولی باید یادمون باشه که مشتق تابع ما مثل سری قبلی نیست که از عبارت مقابل سیگما
مشتق بگیریم و در اینجا علاوه بر عبارت مقابل سیگما از متغییر های سیگما هم باید به نوعی مشتق گرفت.چرا که خود متغییر اند.
مثلا شاید بشه:
[tex]x^{2}=\sum_{i=1}^{x}x_{i}\; \; ,x_{i}=x\Rightarrow \; 2x=\sum_{i=2}^{x}(x_{i})'+(\sum_{i=1}^{x})'x_{i}\; \; \Rightarrow \; \; 2x=\sum_{i=2}^{x}1+(\sum_{i=1}^{x})'x_{i}\; \Rightarrow \; 2x=(x-1)+(\sum_{i=1}^{x})'x_{i}\; \Rightarrow \; x+1=(\sum_{i=1}^{x})'x_{i}[/tex]
smile001
برای گسترش نظریه ها نباید به اصول نظریه ها مطمئن بود.

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 384

Re: تصویر های دانشیک

پست توسط mmeftahpour »

P20.jpg
P20.jpg (105.79 کیلو بایت) مشاهده 5205 مرتبه

dusty

عضویت : دوشنبه ۱۳۹۱/۱۱/۲ - ۰۰:۱۴


پست: 287

سپاس: 431

Re: تصویر های دانشیک

پست توسط dusty »

دو تابع با هم برابر نیستند، که مشتق برابری داشته باشند.
در واقع تنها در یک نقطه با هم برابر هستند، نقطه ی x .

jhvh

عضویت : دوشنبه ۱۳۹۰/۱۰/۲۶ - ۱۷:۰۲


پست: 1621

سپاس: 289

جنسیت:

Re: تصویر های دانشیک

پست توسط jhvh »

ایکس بار که نوشتید خودش یه مفهومه


باهاش رفتار مناسبی نکردید انگار که بگید ایگرگ بار یا صد بار

باید به ایکس شخصیت بدید

نمایه کاربر
خروش

عضویت : پنج‌شنبه ۱۳۸۶/۱/۲۳ - ۱۲:۱۵


پست: 3009

سپاس: 2111

Re: تصویر های دانشیک

پست توسط خروش »

"بار" در شمردن شماره هایی از مجموعه ناشمارا هم به کار می رود؟

Kardinalzahlen.jpg
Kardinalzahlen.jpg (34.81 کیلو بایت) مشاهده 5144 مرتبه
گفتم به شیخ شهر كه كارت ریاست، گفت
آنكس كه شیخ هست و ریاكار نیست، كیست

نمایه کاربر
m.s.f

نام: میثم

محل اقامت: اسپهان

عضویت : یک‌شنبه ۱۳۹۱/۷/۳۰ - ۱۹:۳۳


پست: 244

سپاس: 130

جنسیت:

تماس:

Re: تصویر های دانشیک

پست توسط m.s.f »

من در واقع اصلا نمیگم که این موردی که من نوشتم صحیحه ولی شاید بشه در موردش فکر کرد.
دو تابع با هم برابر نیستند، که مشتق برابری داشته باشند.
در واقع تنها در یک نقطه با هم برابر هستند، نقطه ی x .

شاید
اما میتونی بهم نشون بدی که چرا برابر نیستند؟
در واقع فکر میکنم سری مشکلی نداشته باشه!
ایکس بار که نوشتید خودش یه مفهومه


باهاش رفتار مناسبی نکردید انگار که بگید ایگرگ بار یا صد بار

باید به ایکس شخصیت بدید

منظورتو درست نفهمیدم
ایکس بار که مشتق ایکس هست.
برای گسترش نظریه ها نباید به اصول نظریه ها مطمئن بود.

نمایه کاربر
خروش

عضویت : پنج‌شنبه ۱۳۸۶/۱/۲۳ - ۱۲:۱۵


پست: 3009

سپاس: 2111

Re: تصویر های دانشیک

پست توسط خروش »

- دامنه و بُرد "تابع" چیست؟ آیا "تابع" ما پیوسته است؟
- اگر دامنه آن شمارگان درست است (Z)، شیب چه چیزی را در کجا پیدا کنیم؟

Stetigkeit.jpg
Stetigkeit.jpg (20.61 کیلو بایت) مشاهده 5141 مرتبه
گفتم به شیخ شهر كه كارت ریاست، گفت
آنكس كه شیخ هست و ریاكار نیست، كیست

نمایه کاربر
m.s.f

نام: میثم

محل اقامت: اسپهان

عضویت : یک‌شنبه ۱۳۹۱/۷/۳۰ - ۱۹:۳۳


پست: 244

سپاس: 130

جنسیت:

تماس:

Re: تصویر های دانشیک

پست توسط m.s.f »

خروش نوشته شده:"بار" در شمردن شماره هایی از مجموعه ناشمارا هم به کار می رود؟

فایل ضمیمه Kardinalzahlen.jpg دیگر موجود نیست

من در نرم افزار میپل امتحانش کردم
پیوست ها
11111.png
11111.png (32.16 کیلو بایت) مشاهده 5089 مرتبه
آخرین ويرايش توسط 1 on m.s.f, ويرايش شده در 0.
برای گسترش نظریه ها نباید به اصول نظریه ها مطمئن بود.

نمایه کاربر
خروش

عضویت : پنج‌شنبه ۱۳۸۶/۱/۲۳ - ۱۲:۱۵


پست: 3009

سپاس: 2111

Re: تصویر های دانشیک

پست توسط خروش »

m.s.f نوشته شده:
خروش نوشته شده:"بار" در شمردن شماره هایی از مجموعه ناشمارا هم به کار می رود؟

Kardinalzahlen.jpg

من در نرم افزار متلب امتحانش کردم


همان نکته‌ای که پین گرامی به آن اشاره داشت.
گفتم به شیخ شهر كه كارت ریاست، گفت
آنكس كه شیخ هست و ریاكار نیست، كیست

dusty

عضویت : دوشنبه ۱۳۹۱/۱۱/۲ - ۰۰:۱۴


پست: 287

سپاس: 431

Re: تصویر های دانشیک

پست توسط dusty »

m.s.f نوشته شده:من در واقع اصلا نمیگم که این موردی که من نوشتم صحیحه ولی شاید بشه در موردش فکر کرد.
دو تابع با هم برابر نیستند، که مشتق برابری داشته باشند.
در واقع تنها در یک نقطه با هم برابر هستند، نقطه ی x .

شاید
اما میتونی بهم نشون بدی که چرا برابر نیستند؟
در واقع فکر میکنم سری مشکلی نداشته باشه!

سلام
دو تابع تنها در نقطه دلخواه x با هم برابر هستند.
شرط برابری دو تابع اینه که در تمام نقاط با هم برابر باشد پس به سادگی میشه x+d که d عدد دلخواهی هست رو در معادله جاگزاری کرد و اون رو چک کرد.
مشتق اول طبق انتظار 2x شده که متغیره، اما مشتق دوم که برابر x شده درواقع عدده نه متغیر.
استفاده همزمان از x هم به عنوان ثابت و هم به عنوان متغیر موجب ابهام در مسله شده.

نمایه کاربر
m.s.f

نام: میثم

محل اقامت: اسپهان

عضویت : یک‌شنبه ۱۳۹۱/۷/۳۰ - ۱۹:۳۳


پست: 244

سپاس: 130

جنسیت:

تماس:

Re: تصویر های دانشیک

پست توسط m.s.f »

سلام
دو تابع تنها در نقطه دلخواه x با هم برابر هستند.

خودت که داری میگی دلخواه
مشتق اول طبق انتظار 2x شده که متغیره، اما مشتق دوم که برابر x شده درواقع عدده نه متغیر.

من فکر میکنم یه چیزی هست که باید به اون دقت کنی اون هم اینه که تعداد باری که متغییر با خودش جمع میشود هم متغییر است.
استفاده همزمان از x هم به عنوان ثابت و هم به عنوان متغیر موجب ابهام در مسله شده.

منظور شما کدوم ثابته من که ثابتی نمیبینم.

و محض رضایت با استفاده از نرم افزار به دست میاد:
تصویر
برای گسترش نظریه ها نباید به اصول نظریه ها مطمئن بود.

dusty

عضویت : دوشنبه ۱۳۹۱/۱۱/۲ - ۰۰:۱۴


پست: 287

سپاس: 431

Re: تصویر های دانشیک

پست توسط dusty »

عدد ثابت دلخواه با متغیر فرق داره.
مثلا تابع زیر را در نظر بگیرید.
y=f(x)=ax

در اینجا x همون متغیر تابع است چون عملا با عبارت (f(x مشخص شده.
اما مقدار ثابت a ذکر نشده پس می‌گیم یک عدد دلخواه است.

اگر از رابطه‌ی بالا مشتق بگیریم خواهیم داشت:
df/dx=d(ax)/dx=a
اگر به جای a به صورت ضمنی بزاریم x ولی همچنان با اون به عنوان یک ثابت با اون برخورد کنیم، خواهیم داشت.
df/dx=d(ax)/dx=d(xx)/dx=xdx/dx=x

df/dx=x

***
من نمیدونم دقیقا منظور پین از x بار چیه؟! ولی
در تابع دومی که برای تابع اول نوشته شده،عبارت x بار به هیچ شکلی در تابع ذکر نشده(جز در یک نقطه) و در شکل تابع موجود نیست.
که با باعث تفاوت دوتابع و مشتق هاشون شده.
چیزی که م.مفتاح‌پور گرامی به عنوان ثابت بودن عبار x-بار از اون اسم بردند.

ارسال پست