تصویر های دانشیک

مدیران انجمن: parse, javad123javad

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

*بدون نیاز به محاسبه مساحت هرکدام از این سه قطعه،
میتوان نشان داد که چنین رابطه ای میانشان وجود دارد:


partitions.jpg
partitions.jpg (52.36 کیلو بایت) مشاهده 6687 مرتبه

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 382

Re: تصویر های دانشیک

پست توسط mmeftahpour »

باسلام

P71.jpg
P71.jpg (51.63 کیلو بایت) مشاهده 6650 مرتبه

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

چرا؟
partitions2.jpg
partitions2.jpg (40.72 کیلو بایت) مشاهده 6606 مرتبه

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 382

Re: تصویر های دانشیک

پست توسط mmeftahpour »

باسلام

P74.jpg
P74.jpg (67.74 کیلو بایت) مشاهده 6503 مرتبه

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

عالی بود مفتاح پور عزیز smile104
از روی شکل شما میتوان گفت که OC نیز با y برابر است و در واقع، کلید حل مساله
آن است که مثلث ODA با مثلث OCB برابر است. برای بیان هندسی آن نیز شیوه
خوبی وجود دارد:
http://www.cut-the-knot.org/proofs/Semicircles.shtml

smile072

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

.....
پیوست ها
CIRL.jpg
CIRL.jpg (162.32 کیلو بایت) مشاهده 6188 مرتبه

نمایه کاربر
pulsar

محل اقامت: تبریز

عضویت : پنج‌شنبه ۱۳۸۶/۲/۲۰ - ۲۰:۳۸


پست: 380

سپاس: 196


تماس:

Re: تصویر های دانشیک

پست توسط pulsar »

خیلی جالبه. یک زمانی داشتم درباره ی این دلگون جستجو می کردم
که با این تصاویر برخورد کردم. آنموقع دنبال چراییش نرفتم ولی حالا که
شما این پرسش رو گذاشتید،کنجکاو شدم تا خودم هم امتحان بکنم.
برای همین در ظهر هنگام که خورشید وسط آسمان بود با یک فنجان
دست به آزمودن این پدیده زدم!

از این آزمایش چند چیز دستگیرم شد:
وقتی خورشید عمود بر سطح فنجان بتابد منحنی دلگون نیست:

nonDelgoon.jpg
nonDelgoon.jpg (62.62 کیلو بایت) مشاهده 6139 مرتبه


برای ساخته شدن دلگون باید کمی فنجان رو کج کنیم تا تابش مایل باشه نه عمود:

delgoon.jpg
delgoon.jpg (66.65 کیلو بایت) مشاهده 6139 مرتبه

اون نقطه ی پرنور در هر دو عکس تصویر خورشید هست که برای
اینکه دلگون ساخته بشه این نقطه باید نزدیک دیواره باشه
و همیشه تصویر خورشید روبروی تکینگی دلگون هستش.
تنها با فنجانهایی که دایره ای هستند دلگون ساخته میشه.
با یک قنددان بیضی شکل امتحان کردم و دلگون نبود (شاید یک منحنی دیگری بود).
Beauty is truth, truth beauty
That is all ye know on earth
and all ye need to know

نمایه کاربر
pulsar

محل اقامت: تبریز

عضویت : پنج‌شنبه ۱۳۸۶/۲/۲۰ - ۲۰:۳۸


پست: 380

سپاس: 196


تماس:

Re: تصویر های دانشیک

پست توسط pulsar »

استدلال من به این گونه است که فرض کنیم چشمه ی نور در دیواره ی دایره ایِ فنجان باشه
هر پرتوی که از این چشمه به دیواره برخورد می کنه، محور بازتابش، از نقطه ی برخورد و مرکز دایره
می گذره و زاویه ی بازتابش رو راحت میتونیم پیدا کنیم. اگر شماری از پرتوها رو رسم کنیم، شبحی
از دلگون ظاهر میشه:

delgoon1.png
delgoon1.png (39.47 کیلو بایت) مشاهده 6135 مرتبه

البته باید با ریاضیات نشون بدیم که این حتماً یک دلگونه
و معادله ی اون رو بدست بیاریم تا پاسخ کامل بشه.
Beauty is truth, truth beauty
That is all ye know on earth
and all ye need to know

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 382

Re: تصویر های دانشیک

پست توسط mmeftahpour »

ضمن تشکر از پین عزیز که همیشه مطالبی رو طرح می کنن که در عین سادگی مفاهیم عمیقی رو در خود دارن.

light1.jpg
light1.jpg (46.39 کیلو بایت) مشاهده 6067 مرتبه


وقتی نور بصورت یک پرتو موازی از چشمه دور و با زاویه خاص بتابه

light2.jpg
light2.jpg (55.19 کیلو بایت) مشاهده 6067 مرتبه


(حقیقتش کلیاتش رو خودم متوچه شدم ولی فرمول بندی ریاضی دلگون رو از سایتهای زیر دیدم
http://mathworld.wolfram.com/Catacaustic.html
http://www.geom.uiuc.edu/~fjw/calc-init ... elope.html
http://www.antoniosiber.org/bruno_pauns_caustic_en.html
http://www.phikwadraat.nl/huygens_cusp_of_tea/

نمایه کاربر
pulsar

محل اقامت: تبریز

عضویت : پنج‌شنبه ۱۳۸۶/۲/۲۰ - ۲۰:۳۸


پست: 380

سپاس: 196


تماس:

Re: تصویر های دانشیک

پست توسط pulsar »

mmeftahpour نوشته شده:وقتی نور بصورت یک پرتو موازی از چشمه دور و با زاویه خاص بتابه


ولی برای پرتوهای موازی، شکل حاصل Nephroid یا قلوه گون هستش و نه دلگون :

تصویر

تنها برای حالتی که چشمه روی محیط دایره است، شکل دلگونه.
Beauty is truth, truth beauty
That is all ye know on earth
and all ye need to know

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 382

Re: تصویر های دانشیک

پست توسط mmeftahpour »

ولی برای پرتوهای موازی، شکل حاصل Nephroid یا قلوه گون هستش و نه دلگون :


پرتوهای خورشید بی شک پرتوهای موازیند. صرفنظر از اینکه شکل تولید شده چی باشه(مم‍کن دلگون باشه و یا نباشه) فرض اولیه مسٔله عوض نمیشه.

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

schematic.jpg
schematic.jpg (23.58 کیلو بایت) مشاهده 5991 مرتبه


پالسار و مفتاح پور عزیز، بسیار سپاسگزارم که این مبحث را به زیبایی پیش بردید. smile124

آزمایش پالسار مبنی بر مایل بودن پرتوها نسبت به فنجان صحیح است (در هر تصویری که از
این پدیده در اینترنت دیده ام، سایه ای درون فنجان دیده میشود که نشان دهنده زاویه مورب
پرتوهاست)
از اشاره جناب مفتاح پور نیز معلوم گردید که بخاطر موازی بودن دسته پرتو ها، یکی از پاسخ ها
میتواند Nephroid باشد (البته از تصویری که پالسار گرامی آورند معلوم است که "قلوه گون" دارای
دو محور تقارن است در حالیکه تصویر داخل فنجان تنها یک محور تقارن دارد. در اینباره باید توجه
داشت آنچه که در آزمایش قابل رویت است تنها نیمه حقیقی Nephroid است که بسیار شبیه
دل گون نیز هست. نیمه دیگر آن که توسط امتداد مجازی پرتو ها تشکیل میشود در فیزیک قابل
رویت نیست).

بنابراین تا اینجا احتمالا بتوان تصویری که تنها در یک نیمه فنجان (با یک منبع نور گسترده) نقش
می بندد را به نیمه Nephroid مربوط دانست (که پارامتر تعیین کننده اش تنها زاویه تابش است).
اما در طرح هایی که تمام محیط فنجان را در بر میگیرد، گویا میباید پارامتر دیگری را دخیل دانست
که همان عمق فنجان یا "تعداد انعکاس ها" است:
parameters.jpg
parameters.jpg (176.76 کیلو بایت) مشاهده 5991 مرتبه


که این ذو عامل[4]، نهایتا سبب شکل های گوناگون داخل فنجان ( نیمه Nephroid یا Cardioid یا ..)
خواهد بود.

----------------------------------------------------------------------------------------------------
1- بنده این نتایج را در این مقاله یافتم:
http://duepublico.uni-duisburg-essen.de ... ustic2.PDF
2-تصاویر زیبایی از این پدیده:
http://francis.ziegeltrum.perso.sfr.fr/ ... tique.ppsx


3- احتمالا حالت هایی را نیز بتوان تصور کرد که مثلا با قرا دادن یک لامپ در نزدیکی فنجان،
چشمه نقطه ای نور را شبیه سازی کند. آن بحث هم جداگانه قابل پیگیری ست.


4-به دید من برای یافتن یک راه حل تحلیلی کلی، شاید بهتر باشد پرسش را نه
به شکل ساده شده دو بعدی بلکه به صورت اصلی سه بعدی اش در نظر آورد و
به جای یافتن "منحنی انعکاس"، در پی یافتن "حجم سه بعدی انعکاس" در داخل
فنجان بود که دلگون (یا.... ) مقطع قابل رویت آن است نه خود آن. با این دید، احتمالا
شکل هندسی فنجان (استوانه/مخروط/...) نیز در نتیجه حاصله دخیل خواهد بود.
البته درباره چگونگی پیاده سازی این ایده چندان مطمئن نیستم، راهیست که
هفکری دوستان را طلب میکند. smile072

نمایه کاربر
mmeftahpour

نام: مسعود مفتاح پور

عضویت : یک‌شنبه ۱۳۸۶/۱۰/۲ - ۱۲:۴۲


پست: 457

سپاس: 382

Re: تصویر های دانشیک

پست توسط mmeftahpour »

light3.jpg
light3.jpg (59.63 کیلو بایت) مشاهده 5943 مرتبه

light4.jpg
light4.jpg (67.75 کیلو بایت) مشاهده 5943 مرتبه

نمایه کاربر
pulsar

محل اقامت: تبریز

عضویت : پنج‌شنبه ۱۳۸۶/۲/۲۰ - ۲۰:۳۸


پست: 380

سپاس: 196


تماس:

Re: تصویر های دانشیک

پست توسط pulsar »

در ادامه گفته های دوستان بهتره معادله ی منحنی را هم بدست بیاریم تا این بحث کاملتر بشه.

Untitled-1.png
Untitled-1.png (11.73 کیلو بایت) مشاهده 5927 مرتبه

پرتو 1 در نقطه ی [tex]P_{1}[/tex] منعکس میشه. معادله خط پرتو برگشتی که شامل [tex]P_{1}[/tex] با مختصات
[tex]\left ( rcos\theta ,rsin\theta \right )[/tex] و شیب [tex]tg(2\theta)[/tex] هست، عبارت است از:

[tex]x\sin 2\theta -y\cos 2\theta =r\sin\theta[/tex]

و به همین ترتیب برای پرتو برگشتی دوم در نقطه [tex]P_{2}[/tex] و زاویه [tex]\alpha[/tex] داریم:

[tex]x\sin 2\alpha -y\cos 2\alpha =r\sin\alpha[/tex]

این دو خط در [tex]i[/tex] به هم میرسند که برای مؤلفه [tex]x[/tex] آن داریم:

[tex]x_{i}=\frac{r\left ( \sin\alpha \cos 2\theta- sin\theta \cos 2\alpha)}{\sin(2\alpha-2\theta)}[/tex]

اگر این دو پرتو به هم بسیار نزدیک باشند به گونه ای که [tex]\alpha[/tex] به [tex]\theta[/tex] میل کند در اینصورت نقطه ی [tex]i[/tex]
بر نقطه ی [tex]t[/tex] که روی منحنی واقع هست منطبق میشود:

[tex]x_{t}=\lim_{\alpha \rightarrow \theta } \frac{r\left ( \sin\alpha \cos 2\theta- \sin\theta \cos 2\alpha)}{\sin(2\alpha-2\theta)}\xrightarrow[]{L 'Hospital's Rule}[/tex]


[tex]= \lim_{\alpha \rightarrow \theta } \frac{r\left ( \cos\alpha \cos 2\theta+2 sin\theta \sin 2\alpha)}{2\cos(2\alpha-2\theta)}=\frac{r}{4}\left ( 3\cos\theta -\cos 3\theta \right )[/tex]

و برای مؤلفه [tex]y[/tex] آن با جایگذاری بدست می آید:

[tex]y_{t}=\frac{r}{4}\left ( 3sin\theta -sin3\theta \right )[/tex]

اینها معادلات پارامتری قلوه گون هستند ولی همانطور که دوستان هم گفتند
بسته به شرایط و در نظرگرفتن پارامترهای دیگر منحنی های مختلفی از خانواده
برون چرخزاد (epicycloid) ممکن است ایجاد شود.
Beauty is truth, truth beauty
That is all ye know on earth
and all ye need to know

پين

محل اقامت: تهران

عضویت : جمعه ۱۳۸۶/۱۰/۷ - ۰۱:۱۶


پست: 972

سپاس: 567

جنسیت:

Re: تصویر های دانشیک

پست توسط پين »

...بهتره معادله ی منحنی را هم بدست بیاریم تا این بحث کاملتر بشه.

smile041

ارسال پست