صفحه 2 از 2

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: دوشنبه 3 آبان 1395 - 22:37
از سوی M_J1364@yahoo.com
اون i ها رو توی خط دوم و سوم اگه به توان مثبت و منفیه یک برسونی درست نمیشه؟

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: دوشنبه 3 آبان 1395 - 22:56
از سوی You-See
تفاوتی در اصل مطلب نداره، اعداد گویا هم ناشمارا هستند (فکر می کنم)
بیشتر می گردم مطمئن شدم فیلم اون رو هم می گذارم

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: سه شنبه 4 آبان 1395 - 00:32
از سوی M_J1364@yahoo.com
فکر کنم این یکی دیگه مشکلی نداشته باشه smile026

از اعداد طبیعی به اعداد گویا.png
از اعداد طبیعی به اعداد گویا.png (5.6 KIB) بازدید 2103 بار

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: چهارشنبه 5 آبان 1395 - 18:41
از سوی mmeftahpour
با سلام
حتما تابع باید ضابطه داشته باشه؟
من یک تابع پیدا کردم که از N به همه Q ها ..... هم پوشا هست ، هم یک به یک ..... ولی ضابطه خاصی نداره

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: چهارشنبه 5 آبان 1395 - 21:38
از سوی mmeftahpour
P1.jpg
P1.jpg (39.91 KIB) بازدید 2029 بار

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: جمعه 7 آبان 1395 - 16:55
از سوی سینا1
اگه ضابظه نداشته باشه که میشه یکسری نقطه الکی.حتی اون نقاط الکی هم ضابطه دارن .اره داداش

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: يكشنبه 9 آبان 1395 - 00:02
از سوی mmeftahpour
باسلام
بی ضابطه ، بی ضابطه نیست ..... ضابطه صریح نداره.......
بیشتر با برنامه نویسی میشه درستش کرد .....
من f(0)=0 گرفتم ..... بعد ار n=1 شروع می کنم .... تمام (i/j) هایی که i=1 ...n^2 و j=1...n بطوریکه (i/j) کوچکتر مساوی n رو تولید می کنم ..... و همه (i/j) که قبلا به نمودار اضافه شده رو حذف می کنم...
تعداد این اعداد گویا چون n بی نهایت نیست ، محدود هست و در نتیجه قابل ترتیب ..... پس از کوچک به بزرگ مرتب می کنم و به نمودار اضافه می کنم .....
بعد n=n+1 ..... ,و مراحل بالا رو تکرار می کنم ......

چون(i/j) هیچوقت تکرار نمیشن .... این تابع یک به یک میشه ......
حالا عدد p/q رو در نظر بگیرید که نسبت به هم اول هستن .... اگه p/q از q کوچکتر باشه وقتی n=q باشه ، این عدد ظاهر خواهد شد و اگرنه وقتی n=int(p/q)+1 ......
همه اعداد گویا پوشش داده میشه ، پس پوشا هم هست .....
تو تابع بودنش هم که بحثی نیست ....


اگه ضابظه نداشته باشه که میشه یکسری نقطه الکی.حتی اون نقاط الکی هم ضابطه دارن .

اگه تونستین برای روش فوق ضابطه صریح پیدا کنید ، خوشحال میشم که بشنوم ....
اعداد اول رو هم میشه بصورت تابع کشید ولی تا حالا هیچکس رابطه صریح نتونسته بیان کنه و اصلا هم الکی نیستن

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: دوشنبه 6 شهريور 1396 - 17:29
از سوی asmann
من فک نمی کنم ضابطه صریحی وجود داشته باشه. من یه رابطه نسبتا ساده پیدا کردم.

S: مجموعه همه ی تصویر ها به ازای همه ی m و n هایی که نسبت به هم اول باشند.

مجموعه S رو از کوچک به بزرگ مرتب می کنیم. دنباله تصویر میشه عضو n ام S.

تابع یک به یک و پوشای f از N به Q مثبت: (f(n = توان 2 در تصویر تقسیم بر توان 3 در تصویر.

تصویر

تصویر


برای جا دادن Q منفی میشه Q مثبت رو به زوج ها نسبت داد و برای Q منفی به طریق مشابه از تصویر استفاده کرد و به منفی ها نسبت داد. با یه شیفت هم میشه 0 رو جا داد.

Re: تابعی یک به یک و پوشا رو میشناسید که از Nبه Q بره؟

نوشتهنوشته شده در: دوشنبه 13 شهريور 1396 - 22:52
از سوی The Morrígan
You-See نوشته است:تفاوتی در اصل مطلب نداره، اعداد گویا هم ناشمارا هستند (فکر می کنم)
بیشتر می گردم مطمئن شدم فیلم اون رو هم می گذارم


مجموعه ی اعداد گویا شماراست.

طبق تعریف، اگر کاردینالیتیِ یک مجموعه با کاردینالیتیِ یک زیرمجموعه از مجموعه ی اعداد طبیعی برابر باشه، اون مجموعه شماراست. این یعنی بین اعضای اون مجموعه و زیرمجموعه ای از اعداد طبیعی تناظر یک به یک برقراره.

-------

این پیج یه سری جواب برای پرسش اصلی (هر چند واسه پارساله) داره:

Produce an explicit bijection between rationals and naturals?