سوال سخت هندسی

مدیران انجمن: javad123javad, parse

ارسال پست
نمایه کاربر
rohamjpl

نام: Roham Hesami

محل اقامت: City of Leicester Area of Leicestershire LE7

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 1022

سپاس: 679

جنسیت:

تماس:

سوال سخت هندسی

پست توسط rohamjpl »

در نمودار زیر AD عمود بر AC و$∠BAD = ∠DAE = 12^\circ$ است. اگر$AB + AE = BC$ مقدار $∠ABC$را پیدا کنید
تصویر
اثبات
F را بگیرید در $\overrightarrow{BA}$فراتر از A به طوری که BF=BC
AE=AF و$\triangle AEF$ متساوی الساقین است.
$2\angle BAD=\angle BAE=\angle AEF+\angle AFE=2\angle AFE$
بنابراین AD موازی با EF است.
AD⊥AC و سپس AC⊥EF که به ما می گویند$\square AECF$ شکل ;کایت است.
$\angle EFC=90^{\circ}-\angle FCA$و$\angle AFC=\angle AFE+\angle CFE=102^{\circ}-\angle FCA$
$\angle AFC=\angle ECF=2\angle FCA$ زیرا $\triangle BCF$ متساوی الساقین است.
بنابراین، $\angle FCA=34^{\circ}$ و $\angle ABC=44^{\circ}$
I hope I help you understand the question. Roham Hesami smile072 smile261 smile260 رهام حسامی ترم پنجم مهندسی هوافضا
تصویر

ارسال پست