عدد مختلط

مدیران انجمن: parse, javad123javad

ارسال پست
Keyvan100

عضویت : یک‌شنبه ۱۴۰۱/۱۰/۱۱ - ۰۵:۳۴


پست: 10



جنسیت:

عدد مختلط

پست توسط Keyvan100 »

عدد مختلط روبه ساده ترین حالت ممکن میشه برای من توضیح بدهید؟

نمایه کاربر
decoder

عضویت : چهارشنبه ۱۴۰۰/۱۱/۱۳ - ۱۶:۱۹


پست: 32

سپاس: 4

جنسیت:

تماس:

Re: عددمختلط

پست توسط decoder »

Keyvan100 نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۷:۵۰
عدد مختلط روبه ساده ترین حالت ممکن میشه برای من توضیح بدهید؟
قبل از اینکه اعداد مختلط رو بشناسی باید اعداد حقیقی و موهومی رو بشناسی. اعداد حقیقی همون اعدادی هستند که در زندگی و در حساب و کتاب هامون ازشون استفاده میکنیم. برای مثال اعداد طبیعی، اعداد اعشاری، اعداد کسری، عدد پی و... جزو اعداد حقیقی هستن. اعداد موهومی اعدادی هستن که یه جورایی وجود خارجی ندارن smile055 همونطور که میدونی ما از اعداد مثبت میتونیم جذر بگیریم ولی از اعداد منفی نمیتونیم. چون نمیتونیم عدد پیدا کنیم که در خودش ضرب بشه و حاصلش منفی بشه. چرا؟؟؟ چون یه عدد یا مثبته یا منفی، حالا اگه مثبت باشه، مثبت در مثبت ضرب میشه و حاصلش مثبت میشه و اگه عدد منفی باشه، منفی در منفی ضرب میشه و حاصلش باز مثبت میشه. پس ما برای مثال نمیتونیم جذر عدد منفی یک رو پیدا کنیم. چون عددی رو پیدا نمیکنیم که در خودش ضرب بشه و بشه منفی یک. حالا اینجا ریاضیدان ها یهو جوگیر شدن و گفتن فرض کنیم که چنین عددی وجود داره که در خودش ضرب بشه و بشه منفی یک. همینطور عشقی اسم اون عدد رو گذاشتن "i" به چنین اعدادی اعداد موهومی میگن. الان i×i=-1 میشه. اعدادی مثل 2i, 3i, 6.5i اعداد موهومی هستن.
خب حالا اعداد مختلط چه اعدادی هستن؟ اعدادی که مخلوطی از اعداد حقیقی و موهومی باشند :)
مثلا 2+i یه عدد مختلطه! بخش حقیقیش عدد 2 هست و بخش موهومیش عدد i.
امیدوارم خوب توضیح داده باشم. خودت گفتی ساده بگو دیگه اینطوری شد smile072

Keyvan100

عضویت : یک‌شنبه ۱۴۰۱/۱۰/۱۱ - ۰۵:۳۴


پست: 10



جنسیت:

Re: عددمختلط

پست توسط Keyvan100 »

چرا اصلا چنین اعدادی پیدا شدن؟
زمان موهومی چیه؟
آخرین ویرایش توسط Keyvan100 دوشنبه ۱۴۰۱/۱۰/۱۲ - ۲۰:۳۰, ویرایش شده کلا 1 بار

Keyvan100

عضویت : یک‌شنبه ۱۴۰۱/۱۰/۱۱ - ۰۵:۳۴


پست: 10



جنسیت:

Re: عددمختلط

پست توسط Keyvan100 »

decoder نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۹:۱۲
Keyvan100 نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۷:۵۰
عدد مختلط روبه ساده ترین حالت ممکن میشه برای من توضیح بدهید؟
قبل از اینکه اعداد مختلط رو بشناسی باید اعداد حقیقی و موهومی رو بشناسی. اعداد حقیقی همون اعدادی هستند که در زندگی و در حساب و کتاب هامون ازشون استفاده میکنیم. برای مثال اعداد طبیعی، اعداد اعشاری، اعداد کسری، عدد پی و... جزو اعداد حقیقی هستن. اعداد موهومی اعدادی هستن که یه جورایی وجود خارجی ندارن smile055 همونطور که میدونی ما از اعداد مثبت میتونیم جذر بگیریم ولی از اعداد منفی نمیتونیم. چون نمیتونیم عدد پیدا کنیم که در خودش ضرب بشه و حاصلش منفی بشه. چرا؟؟؟ چون یه عدد یا مثبته یا منفی، حالا اگه مثبت باشه، مثبت در مثبت ضرب میشه و حاصلش مثبت میشه و اگه عدد منفی باشه، منفی در منفی ضرب میشه و حاصلش باز مثبت میشه. پس ما برای مثال نمیتونیم جذر عدد منفی یک رو پیدا کنیم. چون عددی رو پیدا نمیکنیم که در خودش ضرب بشه و بشه منفی یک. حالا اینجا ریاضیدان ها یهو جوگیر شدن و گفتن فرض کنیم که چنین عددی وجود داره که در خودش ضرب بشه و بشه منفی یک. همینطور عشقی اسم اون عدد رو گذاشتن "i" به چنین اعدادی اعداد موهومی میگن. الان i×i=-1 میشه. اعدادی مثل 2i, 3i, 6.5i اعداد موهومی هستن.
خب حالا اعداد مختلط چه اعدادی هستن؟ اعدادی که مخلوطی از اعداد حقیقی و موهومی باشند :)
مثلا 2+i یه عدد مختلطه! بخش حقیقیش عدد 2 هست و بخش موهومیش عدد i.
امیدوارم خوب توضیح داده باشم. خودت گفتی ساده بگو دیگه اینطوری شد smile072
ببخشید با اینا خوب متوجه نمیشم یه کلیپی دیدم درمورد یه صفحه فرضی عمود بردستگاه مختصات حرف میزدکه این عدد مولفه اش به اون هم ربط داره.
اینم لینکش
https://www.aparat.com/v/lKVJ2/%D8%A7%D ... 5%D9%87%29
ضنمنا فرق عدد حقیقی با اسکالر وموهومی چیه؟
اینکه من دوتا سیب دارم روصفحه مختصات رومحور xها نقطه۲رو علامت بزنم اسکالر میشع درست؟
حالا اگه کمیتی مثل کیلومتر برساعت باشه
به دومولفه نیازه درست گفتم؟ونیازبه مولفه موهومی

نمایه کاربر
decoder

عضویت : چهارشنبه ۱۴۰۰/۱۱/۱۳ - ۱۶:۱۹


پست: 32

سپاس: 4

جنسیت:

تماس:

Re: عدد مختلط

پست توسط decoder »

Keyvan100 نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۲۰:۲۸
decoder نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۹:۱۲
Keyvan100 نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۷:۵۰

ببخشید با اینا خوب متوجه نمیشم یه کلیپی دیدم درمورد یه صفحه فرضی عمود بردستگاه مختصات حرف میزدکه این عدد مولفه اش به اون هم ربط داره.
اینم لینکش
https://www.aparat.com/v/lKVJ2/%D8%A7%D ... 5%D9%87%29
ضنمنا فرق عدد حقیقی با اسکالر وموهومی چیه؟
اینکه من دوتا سیب دارم روصفحه مختصات رومحور xها نقطه۲رو علامت بزنم اسکالر میشع درست؟
حالا اگه کمیتی مثل کیلومتر برساعت باشه
به دومولفه نیازه درست گفتم؟ونیازبه مولفه موهومی
بهتره قبل از این بحث دستگاه مختصات قطبی رو بررسی کنی. تقریبا شبیه دستگاه متصات دکارتیه. به درک بهتر مفهوم کمک میکنه.
اعداد مختلط رو به شیوه زیر تعریف میکنیم:
C = {z = a + ib | a,b ∈ R}
i = √(-1)
a بخش حقیقی و ib بخش موهومی هست. b خودش یه عدد حقیقیه ولی ضریب عدد موهومیه!
حالا ما برای اینکه اعداد مختلط رو نشون بدیم نیاز به دو محور داریم یه محور واسه قسمت حقیقی یعنی a و یه محور واسه ضریب قسمت موهومی یعنی b:
تصویر
تصویر

حالا با این مقدمات شما میتونی وارد بحث آنالیز مختلط بشی که من بلد نیستم و از یه کلاس دوازدهمی بیشتر از این هم انتظار نمیره و تا اینجاشم واقعا کوه کندم smile055
اصلا ردی از اعداد مختلط توی کتابای درسیمون نیست.

نمایه کاربر
ghm

عضویت : چهارشنبه ۱۳۹۲/۵/۹ - ۲۱:۰۸


پست: 193

سپاس: 141

جنسیت:

Re: عدد مختلط

پست توسط ghm »

سلام ریشه پیدایش اعداد مختلط، در تلاش بشر برای حل معادلاتی از جمله معادلات درجه 3 بوده که حداقل 4000 سال تمدن هایی از جمله بابلیها یونانیها چینی ها هندی ها مصری ها و ایرانیان رو به خودش مشغول کرده.

در مراحل پایانی روال حل این معادلات بشر به اعدادی رسید که مجبور بود با وجود اینکه قابل تعریف نبودند اونهارو حفظ کنه تا فقط با خط خوردن یا به توان رسیدن از این حالت بیرون آمده یا از معادله حذف بشن اما اون رو به رسیدن به جوابهای حقیقی کمک کنن.

با انتخاب نام مشخص این اعداد تبدیل به وسیله شده و اعداد با یک تعمیم به صورت مختلط کاملتر شدند. اعداد مختلط صورت تعمیم یافته عدد هستند مثل اینکه برای تعیین 2 عدد سیب آن را به صورت 2+0i یا 2e^0i بنویسیم. به طور کل میتوانیم عدد تعمیم یافته یعنی مختلط را در بعضی معادلات برای رسیدن به جواب نهایی مورد استفاده قرار دهیم.

اگر بخوایم به دید ماهیتی به این عدد بخصوص بخش موهومی i نگاه کنیم باید به این سوال جواب دهیم که اگر این عدد چندین مرتبه در خودش ضرب شود چطور تحول می یابد یا پس از چند مرتبه ضرب در خودش به عدد اولیه i میرسد. حد اقل اینکه این عدد با 2 بار ضرب در خودش -1 می شود با ترکیب این ضرب ها و در نظر گرفتن ریاضیات برداری خود به خود به صفحه مختلط میرسیم.

این منبع رو نگاه کنید که درش درک الکساندر مولر به صورت هایی از حل معادله توسط خیام هم اشاره میکنه و به نقل از خیام میگه شاید بعد ها کسانی بیان که این معادله (درجه 3) رو برای رسیدن به جواب عمومی به طور کامل حل کنن.
در این ویدئو مولر به طور دقیق و با دید تاریخی، عدد رو مورد بررسی قرار داده.

How Imaginary Numbers Were Invented

˙ ·٠•♥ السلام علی بقیه الله فی ارضه ♥•٠·˙

نمایه کاربر
rohamavation

نام: roham hesami radرهام حسامی راد

محل اقامت: فعلا تهران قیطریه بلوار کتابی 8 متری صبا City of Leicester Area of Leicestershire LE7

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 2469

سپاس: 4615

جنسیت:

تماس:

Re: عددمختلط

پست توسط rohamavation »

دوست گرامی اعداد مختلطComplex number یا عدد هم‌تافت تشکیل یک فیلد میدن فیلد مختلط C ازاونجایی که عدد مختلط a + bi به‌طور منحصربه‌فرد با یک زوج مرتب (a, b) نمایش داده میشه پس اعداد مختلط یک تناظر یک به یک با نقاط در صفحه دارند. به آن صفحه مختلط میگن.a+bi جمع یک عدد واقعی a و یک عدد خیالی bi را نشان میده. همچنین می توان یک عدد مختلط را به عنوان یک نقطه در $\mathbb{R}^2$ نشون داد: (a,b)، که در آن a جزء واقعی و b جزء خیالی است. می توانیم این نمایش ها را به صورت بنویسیمتصویر
a+bi=a(1,0)+b(0,1)=(a,b)تو مختصات قطبی هم $z = x + yi) $میگیم ${\displaystyle \textstyle r=|z|={\sqrt {x^{2}+y^{2}}}.\,}$ خوب قابلیت انجام کلیه عملیات ریاضی رو داره عدد مختلط $z=a+ bi$ را در نظر بگیرید. این عدد را می‌توانیم به‌عنوان نقطه (a,b) در دستگاه مختصات کارتزین استاندارد یا به‌عنوان برداری که از مبدا شروع شده و پایان آن در نقطه (a,b) است، در نظر بگیریم نمایش اعداد مختلط، محور x، محور حقیقی و محورy، محور موهومیه. اغلب، صفحه تصویر
xy را صفحه مختلط می‌نامیم.فرم قطبی $\begin{equation}z = r\left( {\cos \theta + i\sin \theta } \right) \end{equation}$با تریف $a = r\cos \theta \hspace{0.75in} b = r\sin \theta$که $\theta = \arg z$یا $\begin{equation}\tan \theta = \frac{b}{a}\end{equation}$با فرمولاویلر بحث نمایی ا $\begin{equation}{{\bf{e}}^{i\,\theta }} = \cos \theta + i\sin \theta \end{equation}$یا $z = r{{\bf{e}}^{i\,\theta }}$پی میشه عملیات ریاضی انجام داد حتی ریشه اعداد مختلط هم محاسبه کرد
در مکانیک سیالات از اعداد مختلط برای توصیف جریان پتانسیل در دو بعد استفاده می شود.
حتی در سیستم های مکانیکی دستگاه های متقابل پیچیده ای با انرژی ذخیره شده در فلایویل ها یا فنرها وجود دارد. سلف ها و خازن ها از این نظر مشابه هستند که می توانند انرژی را ذخیره کنند، که در ریاضیات به آن مقدار خیالی میگن .
درس کنترل هواپیما اعداد مختلط به ما این امکان را میده که ویژگی های سیستم های دینامیکی را از دیدگاه فرکانس توصیف کنیم. این تحلیل را می توان با استفاده از ایده تابع انتقال طیفی که از تابع انتقال با جایگزینی متغیر مختلط "s" با "jω" محاسبه کردتو درس کنترل اتوماتیک قسمت پاسخ های فرکانسی خیلی کاربرد داره پاسخ فركانسي همان رفتار سينوسي يك سيستم ديناميكي در حالت ماندگار ه. فقط یک مثال اما بسیار جذاب از کاربرد اعداد مختلط در تئوری هیدرودینامیک/آیرودینامیک به شما بدم مفهوم تابع تحلیلی همراه با معادلات کوشی-ریمان برای تعیین طرح‌های بخش AEROFOIL برای هواپیما و سایر وسایل بالابر در مهندسی هوانوردی استفاده میشه .
برای جریان پتانسیل دو بعدی، میدان سرعت (u,v) دارای پیچش صفر است و باید شیب پتانسیل ϕ باشد:
$u = \frac{\partial \phi}{\partial x}, \,\,\,\,\, v = \frac{\partial \phi}{\partial y}$
معمولاً فرض می کنیم که مولفه های سرعت با توجه به مختصات (x,y) بی نهایت قابل تفکیک هستند. پتانسیل مختلط یک تابع تحلیلی $f(z) = \phi(x,y) + i \psi(x,y)$ از متغیر مختلط$ z=x+iy$ است که قسمت واقعی ϕ پتانسیل سرعت و قسمت خیالی ψ است. به نام تابع جریان.
با تحلیل f می توانیم معادلات کوشی-ریمان را برای بدست آوردن اعمال کنیم
$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}, \\ v= \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x},$
و مشتق مختلط توسط داده می شود
$\frac{df}{dz} = \frac{\partial \phi}{\partial x} + i\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial y} - i\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial x} - i\frac{\partial \phi}{\partial y} = u - iv.$
توجه کنید که مشتق $\frac{df}{dz}$ به اصطلاح سرعت مختلط u−iv و نه u+iv را به ما می‌دهد، که در آن بخش واقعی و خیالی مولفه‌های سرعت با علائم صحیح هستند.
برای به دست آوردن $u + iv$ باید علامت i را در همه جا در f(z) تغییر دهیم و مشتق را نسبت به $\bar{z}$ بگیریم.
مزدوج معمولی عدد مختلط f(z) $\overline{f(z)} = \phi(x,y) - i\psi(x,y)$ است. تابع مختلط مزدوج$\bar{f}$را به صورت تعریف کنید
$\bar{f}(z) = \overline{f(\bar{z})} = \phi(x,-y) - i \psi(x,-y),$
بنابراین
$\bar{f}(\bar{z}) = \overline{f(\bar{\bar{z}})} = \overline{f(z)}= \phi(x,y) - i \psi(x,y).$
بدین ترتیب،
$\frac{d}{d\bar{z}}\bar{f}(\bar{z}) = \frac{\partial \phi}{\partial x} - i\frac{\partial \phi}{\partial(-y)} = \frac{\partial \phi}{\partial x} + i\frac{\partial \phi}{\partial y} = u +iv.$.
نتیجه نهایی این است که -- برای به دست آوردن $u +iv$را با مزدوج −i و z را با مزدوج$\bar{z}$ در همه جای f(z) جایگزین کنید و سپس مشتق را نسبت به مزدوج$\bar{z}$ بگیرید.
به عنوان مثال، فرض کنید پتانسیل مختلط$f(z) = -iz^2$ باشد.
سپس
$u - iv = \frac{df}{dz} = -2iz = -2i(x+iy) = 2y -i(2x)\\ \implies u = 2y, \,\,\,\,\, v = 2x$
و$u + iv = \frac{d\bar{f}}{d\bar{z}} = \frac{d}{d\bar{z}}(i\bar{z}^2) = 2i\bar{z} = 2i(x-iy) = 2y +i(2x)\\ \implies u = 2y, \,\,\,\,\, v = 2x$ خلاصه دنیایی واسه خودش .
تصویر

Keyvan100

عضویت : یک‌شنبه ۱۴۰۱/۱۰/۱۱ - ۰۵:۳۴


پست: 10



جنسیت:

Re: عددمختلط

پست توسط Keyvan100 »

decoder نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۹:۱۲
Keyvan100 نوشته شده:
دوشنبه ۱۴۰۱/۱۰/۱۲ - ۱۷:۵۰
عدد مختلط روبه ساده ترین حالت ممکن میشه برای من توضیح بدهید؟
قبل از اینکه اعداد مختلط رو بشناسی باید اعداد حقیقی و موهومی رو بشناسی. اعداد حقیقی همون اعدادی هستند که در زندگی و در حساب و کتاب هامون ازشون استفاده میکنیم. برای مثال اعداد طبیعی، اعداد اعشاری، اعداد کسری، عدد پی و... جزو اعداد حقیقی هستن. اعداد موهومی اعدادی هستن که یه جورایی وجود خارجی ندارن smile055 همونطور که میدونی ما از اعداد مثبت میتونیم جذر بگیریم ولی از اعداد منفی نمیتونیم. چون نمیتونیم عدد پیدا کنیم که در خودش ضرب بشه و حاصلش منفی بشه. چرا؟؟؟ چون یه عدد یا مثبته یا منفی، حالا اگه مثبت باشه، مثبت در مثبت ضرب میشه و حاصلش مثبت میشه و اگه عدد منفی باشه، منفی در منفی ضرب میشه و حاصلش باز مثبت میشه. پس ما برای مثال نمیتونیم جذر عدد منفی یک رو پیدا کنیم. چون عددی رو پیدا نمیکنیم که در خودش ضرب بشه و بشه منفی یک. حالا اینجا ریاضیدان ها یهو جوگیر شدن و گفتن فرض کنیم که چنین عددی وجود داره که در خودش ضرب بشه و بشه منفی یک. همینطور عشقی اسم اون عدد رو گذاشتن "i" به چنین اعدادی اعداد موهومی میگن. الان i×i=-1 میشه. اعدادی مثل 2i, 3i, 6.5i اعداد موهومی هستن.
خب حالا اعداد مختلط چه اعدادی هستن؟ اعدادی که مخلوطی از اعداد حقیقی و موهومی باشند :)
مثلا 2+i یه عدد مختلطه! بخش حقیقیش عدد 2 هست و بخش موهومیش عدد i.
امیدوارم خوب توضیح داده باشم. خودت گفتی ساده بگو دیگه اینطوری شد smile072
ممنونم توضیح ساده ای بود
فقط برام سوال پیش اومده این عدد کاربردش در تحلیل مدارهای الکتریکی چیه
واینکه من یه توهم دارم که اعدادی داریم که بصورت نقطه درصفحه مختصات نمایش داده میشن ،یه عددهایی هم هستن بصورت برداری باید نشون داده بشن چونکه واحدش مثلامتربرثانیه هست
مثلا ازتقسیم ۴کیلومتر بر۲کیلومتر عدد۲مطلق یاهمون۲ اسکالر(مطلق) بوجود میادکه روی محور علامت میزنیم
ولی ازتقسیم۴ متربر۲ثانیه یه باز عدد۲ بدست میادکه فکرنمیکنم بشه روی همون مختصات اول علامت بزنی
کلا گیج کننده هست واسه من

نمایه کاربر
ghm

عضویت : چهارشنبه ۱۳۹۲/۵/۹ - ۲۱:۰۸


پست: 193

سپاس: 141

جنسیت:

Re: عدد مختلط

پست توسط ghm »

فقط برام سوال پیش اومده این عدد کاربردش در تحلیل مدارهای الکتریکی چیه
سلام کاربرد این اعداد در مدارهای الکتریکی بطور خلاصه تعیین فاز یا اختلاف فاز سیگنال مورد نظر با سیگنال مرجع هست.

مثلا اگر به شما بگن دامنه ولتاژ یک نقطه 20i ولت هست (موهومی) به این معنا هست که اختلاف فازی برابر با 90 درجه در فرکانس مورد نظر با مرجع اصلی که مبنا قرار گرفته شده داره.

برای اثبات این موضوع اول قرار داد کنید که به جای $sin(wt)$ عبارت $e^{-iwt}$ رو بنویسید. این کار باعث سهولت در محاسبات هست. در انتهای محاسبات میتونید به حالت اول تبدیلش کنید.
دلیل این کار این هست که چون سیستم خطی هست هر اتفاقی برا $e^{-iwt}$ بیفته برا $sin(wt)$ هم میفته و $sin(wt)$ ترکیب خطی از $e^{+iwt}$ و $e^{-iwt}$ هست.

پس در اینجا به جای سیگنال $20i.sin(wt)$ عبارت $20i.e^{-iwt}$ نوشته میشه.

در ادامه از این رابطه استفاده میشه $i=e^{i\frac{\pi}{2}}$ این یک اتحاد ریاضی هست. از اینجا میاد که در این ربطه $wt$ رو پی دوم قرار بدید. $e^{iwt}=cos(wt)+isin(wt)$ .

حالا اگر به جای i مقدار معادلش یعنی $e^{i\frac{\pi}{2}}$ رو قرار بدید و در سیگنال $20e^{-iwt}$ ضرب کنید. چون پایه ها e هستند نما هارا با هم جمع جبری کنید.

نتیجه به این صورت خواهد بود

$$20i\times sin(wt) \to 20i\times e^{-iwt}=20e^{i\frac{\pi}{2}} \times e^{-iwt}=20e^{i(-wt+\frac{\pi}{2})}$$

حالا با برگردوندن رابطه متوجه میشیم که در حقیقت ولتاژ 20i به معنی $20sin(wt+\frac{\pi}{2})$ بوده.

بنابر این با داشتن المان هایی مثل خازن که جریانشون 90 درجه از ولتاژ اختلاف فاز داره منطقی هست اگر فکر کنیم امپدانس اونها موهومی و منفی باشد وقتی عددی حقیقی (ولتاژ) را بر عددی موهومی منفی (امپدانس) تقسیم کنیم تا جریان اختلاف دارای اختلاف فاز (به صورت موهومی) به دست آید.
آخرین ویرایش توسط ghm پنج‌شنبه ۱۴۰۱/۱۰/۱۵ - ۲۰:۰۹, ویرایش شده کلا 1 بار
˙ ·٠•♥ السلام علی بقیه الله فی ارضه ♥•٠·˙

نمایه کاربر
You-See

نام: U30

محل اقامت: تهران

عضویت : یک‌شنبه ۱۳۹۳/۵/۱۹ - ۱۹:۰۵


پست: 1205

سپاس: 780

جنسیت:

تماس:

Re: عدد مختلط

پست توسط You-See »

بحث اعداد مختلط اولش یکم سخت میاد چون سعی داریم می کنیم که براش مورد خارجی در دنیای واقعی پیدا کنیم
در صورتی که همین فشار رو وقتی صفر رو اختراع کردن داشتیم
صفر در دنیای واقعی موجود نیست، ولی الان تصورش راحته
عدد منفی که بدتر از اون، یعنی شما مثلا دو تا سیب باید داشته باشی که تازه هیچی سیب نداشته باشی و برسی به صفر!
اعداد گنگ هم که دیگه بدتر، مثلا عدد پی هیچ نمودی در دنیای فیزیکی نداره و هرچی هست فقط تقریب هست.
بی نهایت ها هم که دیگه سرجای خودشون که یک بینهایت می تونه بی نهایت از اون یکی بی نهایت بزرگتر باشه!!!

به طور خلاصه، شما هم می تونی یک سیستم از اعداد من دراوردی بسازی و براش جمع و ضرب و اینا تعریف کنی، وقتی برات کار می کنه و تو حل مسائل خیلی کمک کنه، همین کافیه و مورد استقبال قرار می گیره. ذات ریاضیات انتزاع هست، یعنی مورد بیرونی داشتن براش اهمیتی نداره. بعدها ممکنه براش مورد بیرونی هم کشف بشه، مثلا چه می دونیم شاید تو سیاهچاله ها ابعاد موهومی پیدا باشن.

مثلا شاید یکی بیاد سعی کنه سیستم عددی رو تعریف کنه که توش لگاریتم اعداد منفی معتبر باشن، کما این که چنین تعاریفی واقعا وجود هم دارند.
دوستای گلم حمایت کنید : https://cafebazaar.ir/app/com.nikanmehr.marmarxword/

ارسال پست