مقاومت مصالح

مدیران انجمن: javad123javad, parse

ارسال پست
نمایه کاربر
sonya

محل اقامت: ستار خان لار یورده

عضویت : چهارشنبه ۱۳۹۰/۱/۱۰ - ۲۳:۴۲


پست: 93




تماس:

مقاومت مصالح

پست توسط sonya »

کسی مقاومت مصالح بلده؟؟؟؟؟؟؟؟ smile072
تا هستم ای رفیق ندانی که کیستم روزی سراغ وقت من ایی که نیستم
...................................................................................................................

چهار چیز است که نمی توان آنها را برگرداند:

1- حرف پس از گفتن .

2- زمان پس از گذشتن .

3 - سنگ پس از رها شدن .

4- موقعیت پس از پایان یافتن

نمایه کاربر
Parmenides

عضویت : دوشنبه ۱۳۸۵/۱۲/۲۸ - ۱۵:۴۱


پست: 1323

سپاس: 238

Re: مقاومت مصالح

پست توسط Parmenides »

من یه چیزایی بارمه
No rational argument will have a rational effect on a man who does not want to adopt a rational attitude.

-Karl Popper-

نمایه کاربر
sonya

محل اقامت: ستار خان لار یورده

عضویت : چهارشنبه ۱۳۹۰/۱/۱۰ - ۲۳:۴۲


پست: 93




تماس:

Re: مقاومت مصالح

پست توسط sonya »

سوال:میله استوانه ای به مساحتsبه طول Lو به قطرDتحت اثر نیروی کششی Fقرار گرفته است.ثابت کنید که حداکثر ضریب پواسن در این نمونه برابر 0.5میباشد. smile072 smile072
تا هستم ای رفیق ندانی که کیستم روزی سراغ وقت من ایی که نیستم
...................................................................................................................

چهار چیز است که نمی توان آنها را برگرداند:

1- حرف پس از گفتن .

2- زمان پس از گذشتن .

3 - سنگ پس از رها شدن .

4- موقعیت پس از پایان یافتن

نمایه کاربر
Parmenides

عضویت : دوشنبه ۱۳۸۵/۱۲/۲۸ - ۱۵:۴۱


پست: 1323

سپاس: 238

Re: مقاومت مصالح

پست توسط Parmenides »

بسیار سوال جالبی است، کافی است بدانیم بیشترین ضریب پواسون مربوط به موقعی است که حجم جسم در هنگام تغییر شکل ثابت می ماند.
حالا حجم اولیه و حجم ثانویه رو بنویس و مساوی هم قرار بده. از روابط زیر برای قطر و طول استفاده کن:
D2=D1+deltaY
L2=L1+deltaX
(البته دلتاY منفی است)
بعد از ساده سازی ها و حذف جمله هایی که المان هایی با توان 2 دارن یا در هم ضرب شدن میرسی به:
deltaY*L1=-D1*deltaX/2
(به علامت منفی توجه کن)
حالا رابطه ی ضریب پواسون رو بنویس:
ضریب پواسون=-کرنش محوری/کرنش قائم
که مساویه با:
-deltaY*L1/deltaX*D1

که برابر است با 0.5. (منفی ها هم در هم ضرب میشه)

deltaY=تغییر طول در راستای شعاعی
deltaX=تغییر طول در راستای محوری
D1=قطر قبل از تغییر شکل
L1=طول قبل از تغییر شکل
No rational argument will have a rational effect on a man who does not want to adopt a rational attitude.

-Karl Popper-

نمایه کاربر
sonya

محل اقامت: ستار خان لار یورده

عضویت : چهارشنبه ۱۳۹۰/۱/۱۰ - ۲۳:۴۲


پست: 93




تماس:

Re: مقاومت مصالح

پست توسط sonya »

Parmenides نوشته شده:بسیار سوال جالبی است، کافی است بدانیم بیشترین ضریب پواسون مربوط به موقعی است که حجم جسم در هنگام تغییر شکل ثابت می ماند.
حالا حجم اولیه و حجم ثانویه رو بنویس و مساوی هم قرار بده. از روابط زیر برای قطر و طول استفاده کن:
D2=D1+deltaY
L2=L1+deltaX
(البته دلتاY منفی است)
بعد از ساده سازی ها و حذف جمله هایی که المان هایی با توان 2 دارن یا در هم ضرب شدن میرسی به:
deltaY*L1=-D1*deltaX/2
(به علامت منفی توجه کن)
حالا رابطه ی ضریب پواسون رو بنویس:
ضریب پواسون=-کرنش محوری/کرنش قائم
که مساویه با:
-deltaY*L1/deltaX*D1

که برابر است با 0.5. (منفی ها هم در هم ضرب میشه)

deltaY=تغییر طول در راستای شعاعی
deltaX=تغییر طول در راستای محوری
D1=قطر قبل از تغییر شکل
L1=طول قبل از تغییر شکل
smile072 smile072 smile072
تا هستم ای رفیق ندانی که کیستم روزی سراغ وقت من ایی که نیستم
...................................................................................................................

چهار چیز است که نمی توان آنها را برگرداند:

1- حرف پس از گفتن .

2- زمان پس از گذشتن .

3 - سنگ پس از رها شدن .

4- موقعیت پس از پایان یافتن

نمایه کاربر
sonya

محل اقامت: ستار خان لار یورده

عضویت : چهارشنبه ۱۳۹۰/۱/۱۰ - ۲۳:۴۲


پست: 93




تماس:

Re: مقاومت مصالح

پست توسط sonya »

1- در یک تیر با سطح مقطع دایروی مقدار تنش برشی ماکزیمم را روی تار خنثی به دست اورید؟ smile072
اگه میشه شکلشم بذارین
2-در تیر شکل مقابل که مقطع ان مستطیل می باشد نسبت l/hرا طوری پیدا کنید که تنش خمش و تنش برش هر دو با هم به مقدار مجاز خود برسند.(تنش برشی مجاز= 800kg/cm^2
تنش خمشی مجاز=1400kg/cm^2)
تصویر
تا هستم ای رفیق ندانی که کیستم روزی سراغ وقت من ایی که نیستم
...................................................................................................................

چهار چیز است که نمی توان آنها را برگرداند:

1- حرف پس از گفتن .

2- زمان پس از گذشتن .

3 - سنگ پس از رها شدن .

4- موقعیت پس از پایان یافتن

نمایه کاربر
Parmenides

عضویت : دوشنبه ۱۳۸۵/۱۲/۲۸ - ۱۵:۴۱


پست: 1323

سپاس: 238

Re: مقاومت مصالح

پست توسط Parmenides »

بار گذاری ها باید مشخص باشن، هم تو سوال اول هم تو سوال دوم
No rational argument will have a rational effect on a man who does not want to adopt a rational attitude.

-Karl Popper-

نمایه کاربر
sonya

محل اقامت: ستار خان لار یورده

عضویت : چهارشنبه ۱۳۹۰/۱/۱۰ - ۲۳:۴۲


پست: 93




تماس:

Re: مقاومت مصالح

پست توسط sonya »

Parmenides نوشته شده:بار گذاری ها باید مشخص باشن، هم تو سوال اول هم تو سوال دوم
فقط اینا رو گفته smile072 smile079 smile079
تا هستم ای رفیق ندانی که کیستم روزی سراغ وقت من ایی که نیستم
...................................................................................................................

چهار چیز است که نمی توان آنها را برگرداند:

1- حرف پس از گفتن .

2- زمان پس از گذشتن .

3 - سنگ پس از رها شدن .

4- موقعیت پس از پایان یافتن

نمایه کاربر
Parmenides

عضویت : دوشنبه ۱۳۸۵/۱۲/۲۸ - ۱۵:۴۱


پست: 1323

سپاس: 238

Re: مقاومت مصالح

پست توسط Parmenides »

آخه من وقتی تنش ها رو روی تار خنثی ندارم چطور تنش برشی ماکسیمم رو حساب کنم، باید معلوم باشد قطعه تحت خمش خالص است یا پیچش است یا کشش است یا ترکیبی از این هاست تا بدونم تانسور تنش روی تار خنثی چیه بعد تنش برشی ماکسیمم رو حساب کنم. در مورد دومی هم به طور مشابه، باید بدانم قطعه تحت چه بارگذاری ایه.
No rational argument will have a rational effect on a man who does not want to adopt a rational attitude.

-Karl Popper-

نمایه کاربر
rohamjpl

نام: Roham Hesami

محل اقامت: City of Leicester Area of Leicestershire LE7

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 1149

سپاس: 1416

جنسیت:

تماس:

Re: مقاومت مصالح

پست توسط rohamjpl »

(به عنوان مثال، در نظر بگیرید که بدنه زیردریایی ها خراب نمی شوند زیرا هر عنصر ماده خاصی تحت فشار هیدرواستاتیکی قرار می گیرد. عمق 2000 متر - بسیار فراتر از عمق کار زیردریایی ها - باعث می شود یک سانتی متر مکعب فولاد فقط 0.5 متراکم شود. میکرومتر در یک طرف. در نهایت، زیردریایی‌هایی که از عمق بحرانی خود عبور می‌کنند از کار می‌افتند، زیرا مواد بدنه آن‌ها تحت فشار هیدرواستاتیکی قرار نمی‌گیرد: فشار در خارج بسیار بیشتر از فشار داخل است و هر دو بسیار کمتر از فشار درونی هستند. تنش های طولی و حلقه ای بدنه. این تفاوت ها حالت تنش انحرافی ایجاد می کند که باعث شکست می شود.)
اما هنگام کار با مدول حجیم K، اگر تعریف رایج را ادغام کنیم، با مشکل مواجه می شویم،$K=-V\left(\frac{\partial P}{\partial V}\right),$با فرض ثابت Vبرای به دست آوردن، $\Delta V=-\frac{V_0\Delta P}{K}.$برای مقادیر فشار قابل مقایسه یا بزرگتر از K
مطمئناً ما نمی توانیم رویکرد فشرده سازی حجمی را داشته باشیم یا از حجم اصلی V0 ماده فراتر برویم، درست است؟ حجم یک جسم نمی تواند به صفر یا کمتر از صفر برسد. اول، یک ادغام دقیق تر، برای تطبیق تغییرات بزرگ در V، می دهد$V=V_0\exp \left(-\dfrac{\Delta P}{K} \right).$.مهمتر از آن، بیایید در نظر بگیریم که چگونه ویژگی مادی K
ممکن است با افزایش فشرده سازی تغییر کند. در اینجا، نگاه کردن به منشا مدول های الاستیک مفید است، که می تواند با انحنای پتانسیل جفت بین مولکول ها مرتبط باشد (مثال کلاسیک پتانسیل لنارد-جونز است):
مدول الاستیسیته (E): نسبت بین تنش معمولی و کرنش معمولی یک ماده بر حسب N/m2 است. مدول صلبیت (G): نسبت بین تنش برشی و کرنش برشی یک ماده بر حسب N/m2 است. مدول توده ای (K): نسبت بین تنش نرمال و کرنش حجمی یک ماده در N/m2 استنسبت پواسون مربوط به مدول الاستیک K (که B نیز نامیده می شود)، مدول توده ای است. G به عنوان مدول برشی. و E، مدول یانگ، با موارد زیر (برای جامدات همسانگرد، جامداتی که خواص آنها مستقل از جهت است). مدول های الاستیک معیارهای سفتی هستند. آنها نسبت تنش به کرنش هستند. اما مدول الاستیسیته، E، با نسبت پواسون، ν، با معادله زیر مرتبط است که در آن G
مدول برشی است$G=\frac{E}{2(1+ν)}$ نسبت پواسون و تغییر حجم$\Delta V \approx V \frac{\Delta L}{L}(1-2\nu)$ محوده اون $-1 < \nu < \frac{1}{2}$
نسبت پواسون یک ثابت مورد نیاز در تحلیل مهندسی برای تعیین تنش و خواص انحراف مواد (پلاستیک، فلزات و غیره) است. برای تعیین تنش و خواص انحراف سازه هایی مانند تیرها، صفحات، پوسته ها و دیسک های دوار ثابت است.
نسبت پواسون بالا نشان می دهد که ماده تغییر شکل الاستیک زیادی را نشان می دهد، حتی زمانی که در معرض مقادیر کمی از کرنش قرار می گیرد. در همین حال، ماده ای که نسبت پواسون آن نزدیک به صفر است، بدون توجه به بزرگی کرنش، تغییر شکل الاستیکی ندارد.نسبت پواسون و تغییر حجم $\Delta V \approx V \frac{\Delta L}{L}(1-2\nu)$اگر ماده تشکیل‌دهنده یک میله دارای خاصیت الاستیک خطی باشد، کرنش جانبی (‘ε) در هر نقطه از میله با کرنش محوری (ε) آن در همان نقطه متناسب خواهد بود. نسبت این دو کرنش، یکی از خواص ماده را نمایش می‌دهد. این خاصیت، «نسبت پواسون» (Poisson’s Ratio) نام دارد. نسبت پواسون، یک پارامتر بدون بعد است${\displaystyle \nu =-{\frac {d\varepsilon _{\mathrm {trans} }}{d\varepsilon _{\mathrm {axial} }}}=-{\frac {d\varepsilon _{\mathrm {y} }}{d\varepsilon _{\mathrm {x} }}}=-{\frac {d\varepsilon _{\mathrm {z} }}{d\varepsilon _{\mathrm {x} }}}}$
آیا نسبت پواسون برای یک ماده ثابت است؟
نتیجه تصویر برای بدانید که بالاترین نسبت پواسون زمانی است که حجم یک جسم در طول تغییر شکل ثابت بماند.
برای تنش های درون محدوده الاستیک، این نسبت تقریباً ثابت است. برای یک ماده الاستیک کاملاً همسانگرد، نسبت پواسون 0.25 است، اما برای اکثر مواد این مقدار در محدوده 0.28 تا 0.33 قرار دارد. به طور کلی برای فولادها، نسبت پواسون تقریباً 0.3 خواهد بود.چرا نسبت پواسون ضروری است، وقتی می دانیم که حجم ثابت می ماند؟وقتی حجم حفظ می شود، چرا نسبت پواسون ضروری است؟ من خواندم که وقتی جسمی تحت تنش طولی (فشاری یا کششی) یا تنش برشی قرار می‌گیرد، حجم حفظ می‌شود، بنابراین با توجه به اینکه حجم حفظ می‌شود، دقیقاً به این دلیل که وقتی چیزی را کش می‌دهیم، له می‌کنیم یا می‌پیچانیم، معمولاً حجم حفظ نمی‌شود. یک استثنا لاستیک معمولی است که به یک تقریب معقول تراکم ناپذیر است، بنابراین برای لاستیک σ=1/2 است. برای فولاد حدود 0.3 استتصویر
توجه داشته باشید، تنها تنش های معمولی مسئول ایجاد کرنش حجمی یا تغییر حجم یک ماده هستند. تنش برشی باعث اعوجاج شکل جسم می شود اما حجم آن را تغییر نمی دهد.
منحنی تنش-کرنش مهندسی را می توان به دو ناحیه تقسیم کرد
الف) ناحیه الاستیک: جایی که ماده از قانون هوک پیروی می کند و نسبت پواسون برای یافتن کرنش های الاستیک در تصویر ظاهر می شود.
به طور کلی، حجمی مستقیم εv
هر جسم یا جزء (دارای مدول یانگ E و نسبت پواسون ν) که تحت سه تنش نرمال ودر امتداد محورهای X، Y و Z به ترتیب در محدوده الاستیک قرار می گیرند، با
$\large \epsilon_v=\frac{(\sigma_x+\sigma_y+\sigma_z)(1-2\nu)}{E}$
کرنش حجمی بالا $\epsilon_v$
یک ماده صفر خواهد بود یعنی حجم ماده در دو حالت زیر حفظ می شود
1.) اگر $ \sigma_x+\sigma_y+\sigma_z=0\ $
به عنوان مثال، هنگامی که یک ماده تحت سه تنش معمولی قرار می گیرد به طوری که مجموع (جبری) آنها صفر است، برای مثال σx=50 کیلو پاسکال، σy=20 کیلو پاسکال و σz=−70 کیلو پاسکال، کرنش حجمی εv=0، یعنی حجم جسم یا جزء بدون توجه به ماده یا نسبت پواسون ν، در محدوده الاستیک حفظ می شود
2.) اگر نسبت پواسون 0.5= νبرای مثال لاستیک، کرنش حجمی εv=0
یعنی حجم چنین موادی بدون توجه به نوع تنش هایی که ماده تحت آن قرار می گیرد، در محدوده الاستیک حفظ می شود.
علاوه بر دو مورد فوق، حجم یک جزء تحت تنش های مختلف در محدوده الاستیک حفظ نمی شود، یعنی تغییرات حجمی که نیاز به نسبت پواسون ν دارد.
برای یافتن کرنش های معمولی (محوری) εx، εy، εz، یا کرنش حجمی ϵv
در محدوده الاستیک
ب) ناحیه پلاستیک: جایی که مواد از قانون هوک پیروی نمی کنند و نسبت پواسون در تصویر ظاهر نمی شود. ماده از قانون قدرت کرنش - سخت شدن پیروی می کند
در ناحیه پلاستیک (فراتر از حد الاستیک)، حجم یک جزء تحت تأثیر نیروها یا بارهای خارجی به طور ایده آل حفظ می شود. این ماده از قانون قدرت کرنش سخت شدن پیروی می کند.
$\sigma=\sigma_o+K\epsilon^n$
در جایی که σ تنش جریان است، σ0 تنش جریان تسلیم است که فراتر از آن ماده به صورت پلاستیک تغییر شکل می‌دهد، K ضریب استحکام، ε کرنش پلاستیک، n توان سخت شدن کرنش است.یک میله (دایره ای) بردارید. آن را در امتداد محور خود در ناحیه برگشت پذیر (الاستیک) رفتار بکشید. فرض کنید ماده همسانگرد است. به ترتیب اول، عبارت زیر را می توان مشتق کرد:
$-\frac{dV}{V_o} = \nu^2\epsilon_a^3 + \nu(\nu - 2)\epsilon_a^2 + (1 - 2 \nu)\epsilon_a$
جایی که $dV/V_o$
تییر نسبی حجم ارجاع به حجم اولیه است، ν نسبت پواسون است و εa کرنش محوری dl/lo است.
تمام عباراتی را که مرتبه قدر بالاتر از ϵa هستند حذف کنید
بدست آوردن
$-\frac{dV}{V_o} \approx (1 - 2\nu)\epsilon_a$
از اینجا می توانید ببینید که تنها زمانی که چیزی نزدیک به پایستگی واقعی حجم خواهیم داشت برای ν=0.5 است.
برای یک ماده همسانگرد تحت کرنش محوری بسیار کوچک. محدودیت دوم به این دلیل است که شرایط مرتبه بالاتر به صفر می رسد.حجم در تغییر شکل پلاستیک حفظ می شود، بنابراین چگالی یک نمونه شکسته پس از آزمایش کشش باید با نمونه اولیه یکسان باشد.
اما در حین تست، در حالی که استرس دارد، یک تغییر (بسیار ناچیز) در صدا ایجاد می شود. برای هیچ تغییری نسبت پواسون باید 0.5 باشد.سردرگمی او بوجود می آید زیرا استادان من می گوید که حجم تحت فشار کششی / فشاری در حد الاستیک مواد تغییر نمی کند (در اینجا فلز را در نظر بگیرید). اما تا آنجا که من می بینم با استفاده از نسبت پواسون این کار را می کند (در غیر این صورت فشار جانبی متناسب با ریشه مربع کرنش طولی است). بنابراین آیا حجم تحت تنش کششی تغییر می کند؟ اساس مولکولی چنین چیزی می تواند باشد؟
من کمیتی را تعریف کردم (زیرا محاسبه آن ساده بود) $\frac {\Delta A}{A}$ و سپس متوجه شدم که
از طریق ** نسبت پواسون
$\frac {\Delta A}{A} = \alpha \epsilon _{lon}( \alpha \epsilon _{lon} +2)$
در حالی که یکی با فرض ثابت بودن حجم (به عنوان مثال ، $AL = A_0 L_0$) حاصل شد
$\frac {\Delta A}{A} = \frac {\epsilon _{lon}}{\epsilon _{lon} +1}$
در اینجا $\alpha = \frac {\epsilon_{lat}}{\epsilon_{lon}}$
بله ، میزان حجم تغییر می کند.
تغییر نسبی حجم$ΔV/V$ مکعب به دلیل کشش مواد:
تصویر
با استفاده از $V = L^3$و
$V + \Delta V = (L + \Delta L)\left(L + \Delta L'\right)^2$
$\frac{\Delta V}{V} = \left(1 + \frac{\Delta L}{L} \right)\left(1 + \frac{\Delta L'}{L} \right)^2 - 1$
با استفاده از رابطه مشتق شده فوق بین ΔL و ΔL ′:
$\frac {\Delta V} {V} = \left(1+\frac{\Delta L}{L} \right)^{1-2\nu} - 1$
و برای مقادیر بسیار کوچک ΔL و ΔL ′ ، بازده تقریبی مرتبه اول:
$\frac {\Delta V} {V} \approx (1-2\nu)\frac{\Delta L}{L}$
برای مواد همسانگرد ، می توانیم از پارامترهای Lamé استفاده کنیم
$\frac{1}{2} - \frac{E}{6K}$
که در آن K مدول فله «مدول حجمی» (Bulk Modulus)، معیاری برای ارزیابی نحوه مقاومت مواد در برابر فشردگی یا تراکم است. این پارامتر، نسبت افزایش بسیار کوچک فشار (dP) به کاهش نسبی حجم (dV) را نشان می‌دهد و با حرف «K» یا «B» نمایش داده می‌شود.
ببینید مدول فله یا حجمی$B = \frac{VdP}{-dV}$یا$B = \frac{\rho dP}{d\rho}$جایی که ρچگالی است. سوال: اینها چگونه معادل هستند$\mathrm{d}V = \frac{\partial V}{\partial \rho}\mathrm{d}\rho = -\frac{m}{\rho^2}\mathrm{d}\rho$
E مدول الاستیک یا مدول Young استI hope I help you understand the question. Roham Hesami smile072 smile261 smile260 رهام حسامی ترم پنجم مهندسی هوافضا
تصویر

ارسال پست