مقدار تتا چقدر هست؟

مدیران انجمن: parse, javad123javad

ارسال پست
baby_1

عضویت : سه‌شنبه ۱۳۹۲/۷/۲۳ - ۱۵:۰۲


پست: 71

سپاس: 34

مقدار تتا چقدر هست؟

پست توسط baby_1 »

سلام
دنبال مقدار تتایی هستم که در رابطه زیر
تصویر
به ازای آن مقدار این تابع برابر .5 می شود .شیوه حل این معادله به چه صورت هست؟
سعی کردم از روش بازگشتی معادله را حل کنم که به واگرایی رسیدم(حل من:
تصویر
در نتیجه خواهیم داشت
تصویر
مقدار اولیه تتا را برابر صفر فرض می کنم
تصویر
حالا مقدار جدید را قرار می دهم
تصویر
و حالا
تصویر
تصویر
پیشاپیش از پاسختون ممنونم

نمایه کاربر
Ali.T

عضویت : چهارشنبه ۱۳۸۷/۳/۱۵ - ۲۰:۰۸


پست: 398

سپاس: 479

جنسیت:

Re: مقدار تتا چقدر هست؟

پست توسط Ali.T »

[tex]F(\theta)= \cos^2(\theta) \cos^2(3\theta) = \frac{1}{2}[/tex]

با استفاده از
[tex]\cos(\theta) \cos(3\theta) = \frac{\cos( 2\theta)+ \cos(4 \theta)}{2}[/tex]

داریم:
[tex]\cos( 2\theta)+ \cos(4 \theta) = {}^+_- \sqrt{2}[/tex]

و
[tex]\cos(4\theta)=2\cos^2(2 \theta) - 1[/tex]

[tex]2 \cos^2(2 \theta) + \cos(2 \theta) - (1{}^-_+ \sqrt{2} ) = 0[/tex]

معادله فوق یک معادله درجه دو هست که می توان با روش های متعارف آن را حل کرد. ( اگر مراحل را طی بکنید می بینید که با علامت پایینی اگر کار بکنید زیر رادیکال منفی می شود و از اینجا می شود دید که صرفا می توان در رابطه سوم با مثبت رادیکال دو کار کرد)
بنابراین :
[tex]\cos(2 \theta) = - 0.77 , + 0.27[/tex]

baby_1

عضویت : سه‌شنبه ۱۳۹۲/۷/۲۳ - ۱۵:۰۲


پست: 71

سپاس: 34

Re: مقدار تتا چقدر هست؟

پست توسط baby_1 »

سلام علی آقا
نمی دونم چه جوری ازتون تشکر کنم خیلی کامل ، جامع و واضح سوال رو حل کردین یه دنیا متشکرم
بنابراین برای به دست آورده تتاهای مختلف گویا باید معادلات مختلفی حل شود ،امکان این وجود داره شیوه حل این معادله هم بررسی کنید؟
تصویر
متشکرم

نمایه کاربر
Ali.T

عضویت : چهارشنبه ۱۳۸۷/۳/۱۵ - ۲۰:۰۸


پست: 398

سپاس: 479

جنسیت:

Re: مقدار تتا چقدر هست؟

پست توسط Ali.T »

[tex]\frac{\cos(\frac{\pi}{2}\cos(\theta))}{\sin(\theta)}=\frac{1}{\sqrt{2}}[/tex]

در نتیجه
[tex]\sqrt{2}\cos(\frac{\pi}{2}\cos(\theta)) = \sin(\theta)=\sqrt{1 - \cos^2(\theta)}[/tex]

برای ادامه یک متغیر جدید تعریف می کنیم که محدوده تغییرات آن از منفی یک تا مثبت یک می باشد.
[tex]x= \cos \theta[/tex]

و معادله ای که باید حل بشه به این صورت در می آید
[tex]\sqrt{\frac{1-x^2}{2}}=\cos(\frac{{\pi} x}{2})[/tex]

با توجه به رابطه فوق یکی از جواب ها [tex]x= {}^+_- 1[/tex] می باشد ( که می توان زاویه [tex]\theta[/tex] را به دست اورد)
با توجه به نمودار های رسم شده دو جواب دیگر هم وجود دارد که مقدار تقریبی آن به صورت [tex]x = {}^+_- 0.63[/tex] می باشد.
در آخر جواب های به دست آمده را در رابطه اول بگذارید و مطمئن شوید که درست می باشند، مثلا اگر جواب [tex]x={}^+_-1[/tex] را قرار بدهید به یک صورت مبهم می رسید!! و بعد از رفع ابهام آیا همه چیز درست می شود؟!!!
پیوست ها
2.JPG
2.JPG (18.46 کیلو بایت) مشاهده 1859 مرتبه
1.JPG
1.JPG (17.5 کیلو بایت) مشاهده 1859 مرتبه

ارسال پست