آیا اعداد اول فرمول دارند؟

مدیران انجمن: parse, javad123javad

نمایه کاربر
رضا دانشجو

نام: رضا ابراهیمی

عضویت : سه‌شنبه ۱۳۹۶/۳/۳۰ - ۲۱:۴۸


پست: 108

سپاس: 9

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط رضا دانشجو »

به پست راه حلی آسان برای اعداد اول مراجعه کن.
چشم دل باز کن جان بینی انچه نادیدنی است ان بینی

نمایه کاربر
rohamavation

نام: roham hesami radرهام حسامی راد

محل اقامت: فعلا تهران قیطریه بلوار کتابی 8 متری صبا City of Leicester Area of Leicestershire LE7

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 2392

سپاس: 3832

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط rohamavation »

فرمول های مبتنی بر قضیه ویلسون
یک فرمول ساده است${\displaystyle f(n)=\left\lfloor {\frac {n!{\bmod {(}}n+1)}{n}}\right\rfloor (n-1)+2}$
همانطور که دیگران ذکر کرده اند، فرمول های زیادی برای اعداد اول وجود دارد.
من نمی توانم فرصت را از دست بدهم و به مورد علاقه ام اشاره کنم:$p_n=1+\sum^{2^n}_{m=1}\left\lfloor \sqrt[n]n \left( \sum^{m}_{x=1}\left\lfloor \cos^2\left( \pi \frac{(x-1)!+1}{x}\right) \right\rfloor \right)^{-1/n} \right\rfloor$
به عنوان مثال، ما یک فرمول دقیق برای$n^\text{th}$مین عدد مربع داریم – آن $n^2$ است – اما یک فرمول دقیق (مفید) برای$n^\text{th}$عدد اول $n^\text{th}$ نداریم!
با این حال یک فرمول دقیق برای عدد اول وجود دارد
مجموع دو برابر برای nامین $p_n$ اول است
$p_n=1+\sum_{k=1}^{2(\lfloor n\ln n\rfloor+1)}\Biggl[1-\Biggl\lfloor\frac{\sum_{j=2}^k 1+\lfloor s(j)\rfloor}n\Biggr\rfloor\Biggr],\tag{roham}$
جایی که
$s(j)\equiv-\frac{\sum_{s=1}^j \bigl(\bigl\lfloor\frac js\bigr\rfloor-\bigl\lfloor\frac{j-1}s\bigr\rfloor\bigr)-2}j\tag{roham2}$
حتی یک فرمول دقیق برای تابع شمارش اول$\pi (x)$ وجود دارد. پس چرا ریاضیدانان در حال تلاش برای اثبات فرضیه ریمان هستند تا تخمین بهتری برای $\pi (x)$ و $p_n$ بیابند در حالی که آن فرمول های دقیق را دارند؟
تصویر

نمایه کاربر
You-See

نام: U30

محل اقامت: تهران

عضویت : یک‌شنبه ۱۳۹۳/۵/۱۹ - ۱۹:۰۵


پست: 1198

سپاس: 777

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط You-See »

فرمول های موجود از سیگما و پای استفاده می کنن و یا بازگشتی هستن. این یعنی تعداد محاسبات خیلی بالا، اکثر فرمول ها از کلک اراتوستن استفاده می کنن و در حقیقت میان از یک شروع می کنن تا برسن به مثلا رادیکال اون عدد، حالا با استفاده از کسینوس یا چیز دیگه. این که نشد فرمول سرراست. مثلا تو این فرمول ها سعی کنید 10 هزارمین عدد اول رو استخراج کنید، فکر کنم باید برید چند نسل بعدتون بیاد بگه چی شد.
دوستای گلم حمایت کنید : https://cafebazaar.ir/app/com.nikanmehr.marmarxword/

محمود شلیل احمدی

نام: محمود شلیل احمدی

عضویت : سه‌شنبه ۱۴۰۱/۶/۱ - ۱۴:۲۳


پست: 13

سپاس: 6

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط محمود شلیل احمدی »

M_J1364@yahoo.com نوشته شده:
دوشنبه ۱۴۰۱/۷/۱۸ - ۱۱:۰۹
محمود شلیل احمدی نوشته شده:
دوشنبه ۱۴۰۱/۷/۱۸ - ۰۹:۳۵
سلام برهمه دوستداران ریاضی
بنده فرمولی دارم که اعداد اول را از غیر اول تشخیص می دهد به این صورت که عدد مورد نظرتان را در این تابع (فرمول) قرار می دهید پس از انجام عملیات و کسب شرایط از قبل تعیین شده وضعیت عدد را به شما نشان می دهد تنها اشکال این تابع نمایی بودن آنست
سلام
من خودم هم حدود 10 سال پیش، یه فورمول بازگشتی رو ابداع کردم که عدد یک رو به اعداد غیر اول، نظیر می کرد و اعداد اول رو محاسبه می کرد. فرمول من این شکلیه: ( $a_0=2$)

$$a_{m+1}=2\Pi_{i=0}^m\frac{3+i}{(a_{m-i})^{\Sigma_{k=1}^{3+m}}\lfloor\frac{3+m}{(a_{m-i})^k}\rfloor}$$
سلام فرمول تشخیص اعداد اول از غیر اولی که کشف کرده ام به صورت بسیار ساده اما متاسفانه نمایی است
K = ((2^P) - 2) / P در این تابع چنانچه به اذا هر عددی مانند P مقدار K عددی صحیح باشد آنکاه P عددی است اول برای اثبات این فدمول آمادگی کامل دارم فقط امیدوارم این فرمول را در آینده کسی بنام خودش ثبت نکند چون پس از گذشت چهل و اندی سال اولین بار است که آنرا به دوستداران ریاضی تقدین می کنم

نمایه کاربر
You-See

نام: U30

محل اقامت: تهران

عضویت : یک‌شنبه ۱۳۹۳/۵/۱۹ - ۱۹:۰۵


پست: 1198

سپاس: 777

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط You-See »

فرمول خیلی خیلی جالبی بود، تا جایی که ظرفیت ماشین حساب اجازه می داد چندتاش رو تست کردم خیلی عجیب اومد برام.
اگر اثبات دارید براش و اگر جایی تا به حال نبوده اقدام به نشر و ثبتش کنید حتما.
اینجا رو هم ببینید:
https://www.jstor.org/stable/41291833
دوستای گلم حمایت کنید : https://cafebazaar.ir/app/com.nikanmehr.marmarxword/

محمود شلیل احمدی

نام: محمود شلیل احمدی

عضویت : سه‌شنبه ۱۴۰۱/۶/۱ - ۱۴:۲۳


پست: 13

سپاس: 6

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط محمود شلیل احمدی »

You-See نوشته شده:
چهارشنبه ۱۴۰۱/۷/۲۰ - ۲۲:۵۷
فرمول خیلی خیلی جالبی بود، تا جایی که ظرفیت ماشین حساب اجازه می داد چندتاش رو تست کردم خیلی عجیب اومد برام.
اگر اثبات دارید براش و اگر جایی تا به حال نبوده اقدام به نشر و ثبتش کنید حتما.
اینجا رو هم ببینید:
https://www.jstor.org/stable/41291833
سلام
اثبات این قضیه به سادگی همان فرمول است اما نمیدانم کجا و چگونه ثبتش کنم این فرمول را همانطور که گفتم بیش از چهل سال است که کشف کرده ام و تا کنون به جایی ارائه ننموده ام متشکرم از بذل توجه دوستان عزیز گروه اگر راهنمایی کنند

نمایه کاربر
M_J1364@yahoo.com

نام: م. ج. معروف به گربه ی زَبادی

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۹/۲۴ - ۱۱:۴۹


پست: 1399

سپاس: 506

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط M_J1364@yahoo.com »

You-See نوشته شده:
سه‌شنبه ۱۴۰۱/۷/۱۹ - ۱۸:۰۸
اینو ببین:

Untitled.png
آره اتفاقاً این فورمول رو همون ده سال پیش هم دیده بودم و توی مقاله م (که به فارسی بود و هرگز هم جایی چاپ نشد) آورده بودمش. عیبش اینه که برای $n$های بزرگ، محاسبات، دشوار میشه و مثل فورمول من، ساده-پذیر هم نیست.
محمود شلیل احمدی نوشته شده:
پنج‌شنبه ۱۴۰۱/۷/۲۱ - ۰۱:۰۲
سلام
اثبات این قضیه به سادگی همان فرمول است اما نمیدانم کجا و چگونه ثبتش کنم این فرمول را همانطور که گفتم بیش از چهل سال است که کشف کرده ام و تا کنون به جایی ارائه ننموده ام متشکرم از بذل توجه دوستان عزیز گروه اگر راهنمایی کنند
سلام آقای احمدی
من هم تا جایی که می تونستم فورمولتون رو چک کردم، درست کار می کرد. اگه براش اثبات هم داشته باشید که باید بهتون آفرین گفت. مشابه فورمول شما مثل لینکی که یوسف داد رو چند جا دیدم ولی به نظرم فورمولتون متمایزه و احتمالاً کسی قبل از شما پیداش نکرده. تنها ضعفش، همونطور که خودتون گفتید نمایی بودنشه که برای اعداد بزرگ، محاسبات رو دشوار می کنه. برای ثبتش، بهتره مقاله ش کنید و برای یه مجله بفرستیدش. من توی زمینه ی فیزیک، مقاله دارم، احتمالاً بتونم توی ریاضی هم مقاله بنویسم. اگه تمایل داشتید می تونم یه مقاله بنویسم و هم فورمول شما و هم فورمول خودم رو توش معرفی کنم. (بنابراین اسم شما رو هم به عنوان نویسنده ی مقاله مطرح می کنم) اگه مایل هستید، می تونید اثبات معادله تون رو برام بفرستید یا همین جا توی هوپا بذاریدش.

محمود شلیل احمدی

نام: محمود شلیل احمدی

عضویت : سه‌شنبه ۱۴۰۱/۶/۱ - ۱۴:۲۳


پست: 13

سپاس: 6

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط محمود شلیل احمدی »

M_J1364@yahoo.com نوشته شده:
پنج‌شنبه ۱۴۰۱/۷/۲۱ - ۱۲:۱۵
You-See نوشته شده:
سه‌شنبه ۱۴۰۱/۷/۱۹ - ۱۸:۰۸
اینو ببین:

Untitled.png
آره اتفاقاً این فورمول رو همون ده سال پیش هم دیده بودم و توی مقاله م (که به فارسی بود و هرگز هم جایی چاپ نشد) آورده بودمش. عیبش اینه که برای $n$های بزرگ، محاسبات، دشوار میشه و مثل فورمول من، ساده-پذیر هم نیست.
محمود شلیل احمدی نوشته شده:
پنج‌شنبه ۱۴۰۱/۷/۲۱ - ۰۱:۰۲
سلام
اثبات این قضیه به سادگی همان فرمول است اما نمیدانم کجا و چگونه ثبتش کنم این فرمول را همانطور که گفتم بیش از چهل سال است که کشف کرده ام و تا کنون به جایی ارائه ننموده ام متشکرم از بذل توجه دوستان عزیز گروه اگر راهنمایی کنند
سلام آقای احمدی
من هم تا جایی که می تونستم فورمولتون رو چک کردم، درست کار می کرد. اگه براش اثبات هم داشته باشید که باید بهتون آفرین گفت. مشابه فورمول شما مثل لینکی که یوسف داد رو چند جا دیدم ولی به نظرم فورمولتون متمایزه و احتمالاً کسی قبل از شما پیداش نکرده. تنها ضعفش، همونطور که خودتون گفتید نمایی بودنشه که برای اعداد بزرگ، محاسبات رو دشوار می کنه. برای ثبتش، بهتره مقاله ش کنید و برای یه مجله بفرستیدش. من توی زمینه ی فیزیک، مقاله دارم، احتمالاً بتونم توی ریاضی هم مقاله بنویسم. اگه تمایل داشتید می تونم یه مقاله بنویسم و هم فورمول شما و هم فورمول خودم رو توش معرفی کنم. (بنابراین اسم شما رو هم به عنوان نویسنده ی مقاله مطرح می کنم) اگه مایل هستید، می تونید اثبات معادله تون رو برام بفرستید یا همین جا توی هوپا بذاریدش.
سلام برشما دوست گرامی
همانطور که گفتم اثباتش خیلی ساده است خیلی دوست داشتم اثبات این فرمول و یا قضیه را در حضور اساتید محترم ریاضی کشور علی الخصوص استاد گرانمایه خودم جناب آقای پروفسور کرم زاده انجام می دادم به هر حال از لطف شما بسیار سپاسگزارم و در آینده نزدیک اقدام خواهم کرد حقیقتش اینه که تو این سن ۶۷ سالگی دیگه حوصله ای نمانده تقریب دیگری هم در ارتباط با اندازه گیری محیط بیضی داشته ام که با کمک پروفسور stanislav sykora با خطای حداکثر ۱۵۰ppb در نوع خود بی نظیر است ( طبق گفته پروفسور sykora ) و احتمالا آنرا دیده باشید آدرسش را قبلا در گروه گذاشته ام

نمایه کاربر
M_J1364@yahoo.com

نام: م. ج. معروف به گربه ی زَبادی

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۹/۲۴ - ۱۱:۴۹


پست: 1399

سپاس: 506

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط M_J1364@yahoo.com »

بچه ها، بی زحمت کسی می تونه برنامه ی این دنباله ی بازگشتی رو بنویسه ببینه آیا جملاتش مشتمل بر صفر و اعداد اول هستن یا نه. فکر کنم برنامه ش یه خرده سخت باشه:

$$a_{m+1}=\frac{m^2}{2}+\frac{7m}{2}+6-\sum_{i_m=0}^{(m+3)\operatorname{sgn}(a_m)}\space ... \space \sum_{i_1=0}^{(m+3)\operatorname{sgn}(a_1)}\space\sum_{i_0=0}^{(m+3)\operatorname{sgn}(a_0)}\left ( f(a_k,i_k,m)\operatorname{sgn}\left (\left\lfloor{\frac{m+3}{f(a_k,i_k,m)}}\right\rfloor\right )\right )$$
که توی این رابطه $\operatorname{sgn}$ همون تابع علامته و داریم:

$$f(a_k,i_k,m)=\prod_{k=0}^{m}\left ( a_k+1-\operatorname{sgn}(a_k)\right )^{i_k}$$
فرض کنید $a_0=2$ و همینطور دقت کنید که به علامت های سیگما توی هر مرحله یکی اضافه میشه.

Squid game

عضویت : پنج‌شنبه ۱۴۰۰/۷/۲۹ - ۲۲:۵۸


پست: 7

سپاس: 1

Re: آیا اعداد اول فرمول دارند؟

پست توسط Squid game »

آقای احمدی =
این فرمول ؟ در ده صفحه اول همه کتب مقدماتی نظریه اعداد آمده الفبای نطریه اعداده. بهش میگن قضیه اول فرما؟
اثبات ش هم خیلی ساده ست
یه جور فرمول بازگشتیه
(دو به توان پی منهای یک ) منهای یک رو باز می کنیم
بین حاصل ضرب ها یک پی وجود داره
پس بر پی بخش پذیر هست

نمایه کاربر
M_J1364@yahoo.com

نام: م. ج. معروف به گربه ی زَبادی

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۹/۲۴ - ۱۱:۴۹


پست: 1399

سپاس: 506

جنسیت:

تماس:

Re: آیا اعداد اول فرمول دارند؟

پست توسط M_J1364@yahoo.com »

Squid game نوشته شده:
سه‌شنبه ۱۴۰۱/۸/۱۷ - ۲۱:۱۷
آقای احمدی =
این فرمول ؟ در ده صفحه اول همه کتب مقدماتی نظریه اعداد آمده الفبای نطریه اعداده. بهش میگن قضیه اول فرما؟
اثبات ش هم خیلی ساده ست
یه جور فرمول بازگشتیه
(دو به توان پی منهای یک ) منهای یک رو باز می کنیم
بین حاصل ضرب ها یک پی وجود داره
پس بر پی بخش پذیر هست
هادی داره راست میگه. فورمول آقای احمدی همون قضیه ی اول فرماست. عجیبه که خودمم متوجه نشدم!

Squid game

عضویت : پنج‌شنبه ۱۴۰۰/۷/۲۹ - ۲۲:۵۸


پست: 7

سپاس: 1

Re: آیا اعداد اول فرمول دارند؟

پست توسط Squid game »

اثبات ش رو اشتباه گفتم ، البته از طریقی که من اثبات کردم یه چیزایی مبنی بر اثبات پیچیده تر به ذهنم میرسه

محمود شلیل احمدی

نام: محمود شلیل احمدی

عضویت : سه‌شنبه ۱۴۰۱/۶/۱ - ۱۴:۲۳


پست: 13

سپاس: 6

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط محمود شلیل احمدی »

Squid game نوشته شده:
سه‌شنبه ۱۴۰۱/۸/۱۷ - ۲۱:۱۷
آقای احمدی =
این فرمول ؟ در ده صفحه اول همه کتب مقدماتی نظریه اعداد آمده الفبای نطریه اعداده. بهش میگن قضیه اول فرما؟
اثبات ش هم خیلی ساده ست
یه جور فرمول بازگشتیه
(دو به توان پی منهای یک ) منهای یک رو باز می کنیم
بین حاصل ضرب ها یک پی وجود داره
پس بر پی بخش پذیر هست
سلام بر دوست گرامی
اگر این فرمول مربوط به نظریه اعداد هست و به آن قضیه اول فرما می گویند پس چرا محققین و دانشمندان ریاضی برای دستیابی به فرمولی جهت تشخیص اعداد اول از غیر اول تلاش می کنند ؟

Squid game

عضویت : پنج‌شنبه ۱۴۰۰/۷/۲۹ - ۲۲:۵۸


پست: 7

سپاس: 1

Re: آیا اعداد اول فرمول دارند؟

پست توسط Squid game »

https://en.m.wikipedia.org/wiki/Mersenne_prime
فرمول شما استثنا داره و اون عدد ۱۱ ه و استثنائات دیگه
در ضمن همه اعداد اول رو نمیده

محمود شلیل احمدی

نام: محمود شلیل احمدی

عضویت : سه‌شنبه ۱۴۰۱/۶/۱ - ۱۴:۲۳


پست: 13

سپاس: 6

جنسیت:

Re: آیا اعداد اول فرمول دارند؟

پست توسط محمود شلیل احمدی »

Squid game نوشته شده:
سه‌شنبه ۱۴۰۱/۸/۲۴ - ۰۰:۱۰
https://en.m.wikipedia.org/wiki/Mersenne_prime
فرمول شما استثنا داره و اون عدد ۱۱ ه و استثنائات دیگه
در ضمن همه اعداد اول رو نمیده
سلام دوست عزیز
اگر درست متوجه شده باشم فرموده اید فرمول من استثنا دارد مثلا عدد ۵ و ۱۱ اگر درست دیده باشم فرموده اید همه اعداد اول را نمی دهد مثلا کدام عدد اول را نمی دهد ؟
در مورد عدد ۵ بررسی کنیم
۲- ۵^۲ = ۳۰ ۵÷۳۰ =۶
در مورد ۱۱
۲ - ۱۱^۲ = ۲۰۴۶
۱۱÷۲۰۴۶ = ۲۹۶
متشکر می شوم اعدا اول دیگری را که جواب نمی دهد به بنده ارایه نمایید

ارسال پست